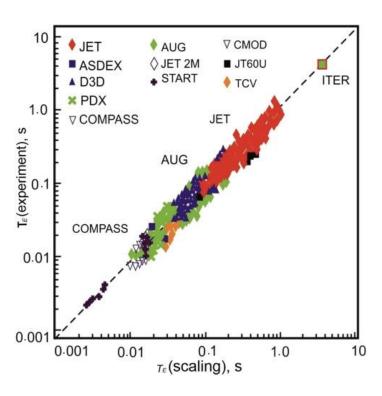


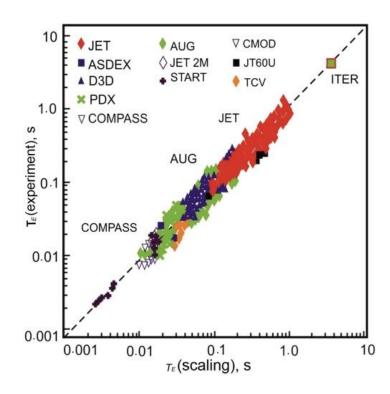
Overview of transport modeling for SPARC H-modes: sensitivity of fusion performance to physics inputs

Marco Muraca

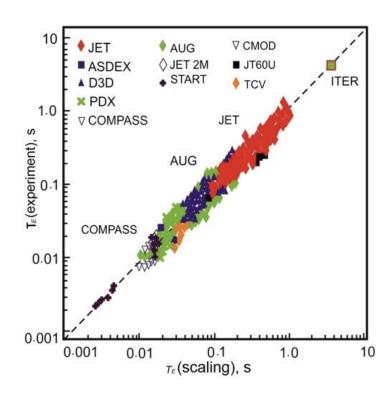
MIT Plasma Science and Fusion Center

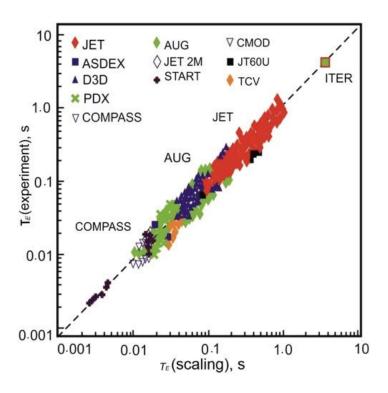

M. Muraca¹, P. Rodriguez-Fernandez¹, N. T. Howard¹, J. Hall¹, T.Body²

[1] MIT PSFC [2] CFS



INTRODUCTION


Needs for extrapolations/predictions

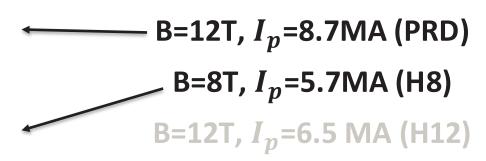

- Needs for extrapolations/predictions
- Important predictions for future machines success $\rightarrow P_{fus}$ and Q

- Needs for extrapolations/predictions
- Important predictions for future machines success $\rightarrow P_{fus}$ and Q
- However, simulations need a certain number of assumptions:
 - Are they realistic?
 - Can they be operationally controlled?
 - How strongly do they affect performance?

- Needs for extrapolations/predictions
- Important predictions for future machines success $\rightarrow P_{fus}$ and Q
- However, simulations need a certain number of assumptions:
 - Are they realistic?
 - Can they be operationally controlled?
 - How strongly do they affect performance?

GOAL Study effect of varying input assumptions on fusion performance

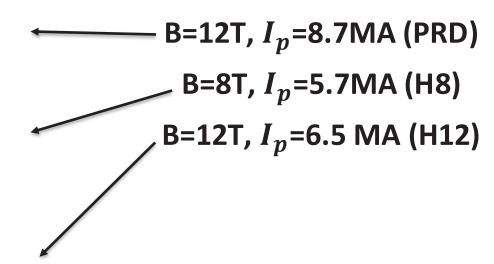
Reference H-mode, to reach high P_{fus} and Q


$$\leftarrow$$
 B=12T, I_p =8.7MA (PRD)

B=8T, I_p =5.7MA (H8)

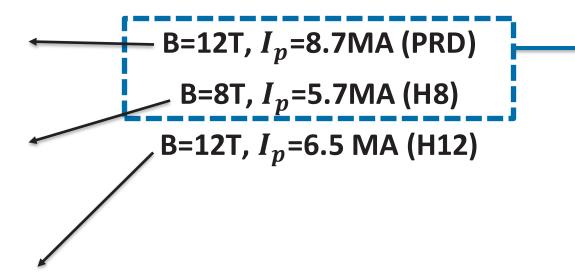
B=12T, I_p =6.5 MA (H12)

Reference H-mode, to reach high P_{fus} and Q


Low-risk H-mode with alternative ICRH scheme

Reference H-mode, to reach high P_{fus} and Q

Low-risk H-mode with alternative ICRH scheme


H-mode for robust Q>1 operation

Reference H-mode, to reach high P_{fus} and Q

Low-risk H-mode with alternative ICRH scheme

H-mode for robust Q>1 operation

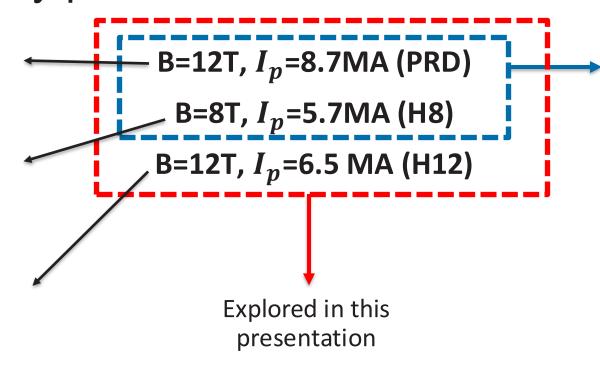
Integrated Modeling of SPARC H-mode Scenarios: Exploration of the Impact of Modeling Assumptions on Predicted Performance

M. Muraca¹, P. Rodriguez-Fernandez¹, N.T. Howard¹, J. Hall¹, E. Fable², G. Tardini²

¹MIT Plasma Science and Fusion Center, 167 Albany St, Cambridge, MA 02139, USA ²Max Planck Institut fuer Plasma Physik, Boltzmannstrasse 2, Garching bei Muenchen, 85748, Germany

E-mail: mmuraca@mit.edu

November 2024


Abstract. In this paper an extensive database of SPARC H-modes confinement predictions has been provided, to assess its variability with respect to few input assumptions. The simulations have been performed within the ASTRA framework, using the quasi-linear model TGLF SAT2, including electromagnetic effects, for the core transport, and a neural network trained on EPED simulations to predict the pedestal height and width self-consistently. The database has been developed starting from two SPARC H-mode discharges (12.2 T, i.e. Primary Reference Discharge or PRD, and 8 T, i.e. reduced field) and permuting 4 input parameters (W concentration, DT mixture concentration, temperature ratio at top of pedestal and deviation of pedestal pressure from the EPED prediction), to perform a sensitivity study. For the PRD a scan of auxiliary input power (ion cyclotron heating) has been performed up to 25MW, to keep highly radiative plasmas above the LH power threshold as predicted by Martin and Schmidtmayr power scalings. A scan of pedestal density has then been performed for both PRD and 8T databases. p_{top}/p_{EPED} and T_i/T_e at top of pedestal showed the biggest impact on the fusion gain. Significant variation is observed across the database, highlighting the importance of sensitivity studies. Below a certain W concentration, the 12T database shows that Q > 5 is consistently achieved for full-field H-modes with 11 MW of auxiliary power, and values of Q > 2are assured when increasing the input power to keep the plasma in H-mode. The 8T database demonstrates that SPARC can access a Q > 1 operational window with low W concentration, making it a potentially interesting scenario for obtaining breakeven

submitted to NF, published on arXiv (arXiv:2502.00187)

Reference H-mode, to reach high P_{fus} and Q

Low-risk H-mode with alternative ICRH scheme

H-mode for robust Q>1 operation

Integrated Modeling of SPARC H-mode Scenarios: Exploration of the Impact of Modeling Assumptions on Predicted Performance

M. Muraca¹, P. Rodriguez-Fernandez¹, N.T. Howard¹, J. Hall¹, E. Fable², G. Tardini²

¹MIT Plasma Science and Fusion Center, 167 Albany St, Cambridge, MA 02139, USA ²Max Planck Institut fuer Plasma Physik, Boltzmannstrasse 2, Garching bei Muenchen, 85748, Germany

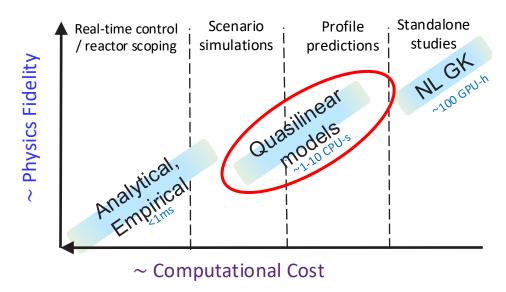
E-mail: mmuraca@mit.edu

November 2024

Abstract. In this paper an extensive database of SPARC H-modes confinement predictions has been provided, to assess its variability with respect to few input assumptions. The simulations have been performed within the ASTRA framework, using the quasi-linear model TGLF SAT2, including electromagnetic effects, for the core transport, and a neural network trained on EPED simulations to predict the pedestal height and width self-consistently. The database has been developed starting from two SPARC H-mode discharges (12.2 T, i.e. Primary Reference Discharge or PRD, and 8 T, i.e. reduced field) and permuting 4 input parameters (W concentration, DT mixture concentration, temperature ratio at top of pedestal and deviation of pedestal pressure from the EPED prediction), to perform a sensitivity study. For the PRD a scan of auxiliary input power (ion cyclotron heating) has been performed up to 25MW, to keep highly radiative plasmas above the LH power threshold as predicted by Martin and Schmidtmayr power scalings. A scan of pedestal density has then been performed for both PRD and 8T databases. p_{top}/p_{EPED} and T_i/T_e at top of pedestal showed the biggest impact on the fusion gain. Significant variation is observed across the database, highlighting the importance of sensitivity studies. Below a certain W concentration, the 12T database shows that Q > 5 is consistently achieved for full-field H-modes with 11 MW of auxiliary power, and values of Q > 2are assured when increasing the input power to keep the plasma in H-mode. The 8T database demonstrates that SPARC can access a Q > 1 operational window with low W concentration, making it a potentially interesting scenario for obtaining breakeven

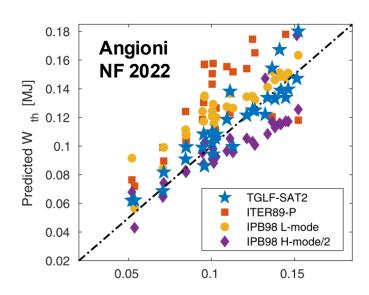
submitted to NF, published on arXiv (arXiv:2502.00187)

Outline of the talk

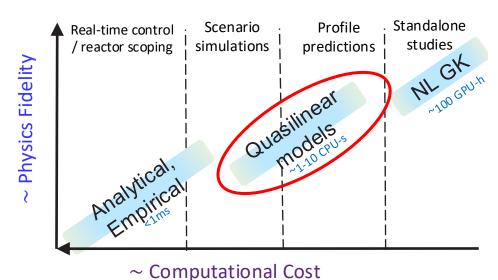

- Description of the simulations framework
- Plasma Reference Discharge (PRD) [12T, 8.7MA]
- Reduced field H-mode (H8) [8T, 5.7MA]
- Reduced current H-mode (H12) [12T, 6.5MA]

Outline of the talk

- Description of the simulations framework
- Plasma Reference Discharge (PRD) [12T, 8.7MA]
- Reduced field H-mode (H8) [8T, 5.7MA]
- Reduced current H-mode (H12) [12T, 6.5MA]

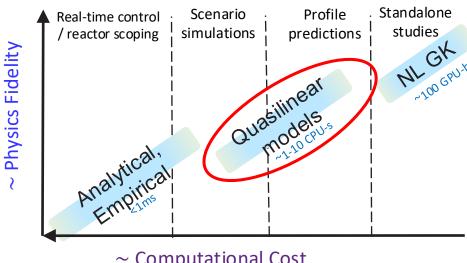

H-modes database generated by using TGLF+EPED-NN

- Available models:
 - ➤ High fidelity → slow
 - ➤ Low fidelity → poor reliability
 - ➤ Medium fidelity → time / reliability compromise

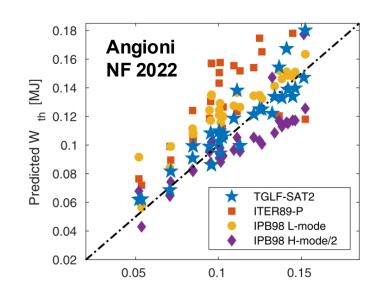


H-modes database generated by using TGLF+EPED-NN

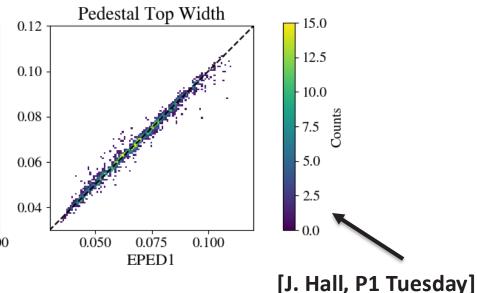
- Available models:
 - ➤ High fidelity → slow
 - ➤ Low fidelity → poor reliability
 - ➤ Medium fidelity → time / reliability compromise
- ❖ Core transport → TGLF-SAT2: quasi-linear transport model [1]

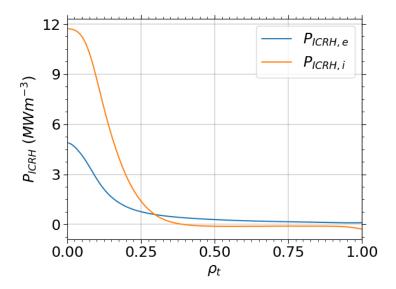


[1] G.M. Staebler et al 2021 Nucl. Fusion 61 116007



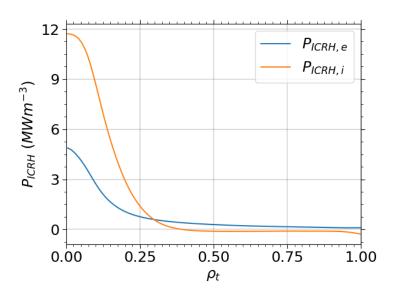
H-modes database generated by using TGLF+EPED-NN


- Available models:
 - ➤ High fidelity → slow
 - > Low fidelity >> poor reliability
 - ➤ Medium fidelity → time / reliability compromise
- ❖ Core transport → TGLF-SAT2: quasi-linear transport model [1]
- ❖ Pedestal stability → NN derived from EPED [2] for SPARC H-modes

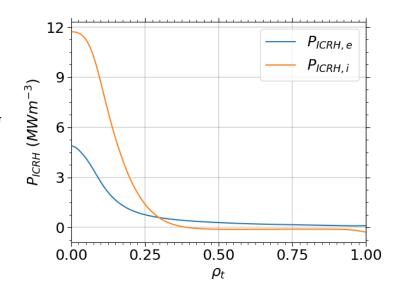


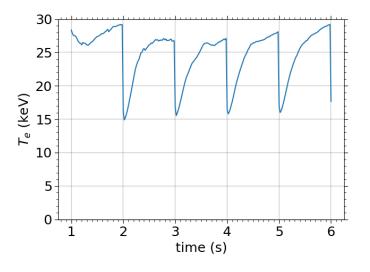
[1] G.M. Staebler et al 2021 Nucl. Fusion 61 116007

[2] P.B. Snyder et al 2011 Nucl. Fusion **51** 103016

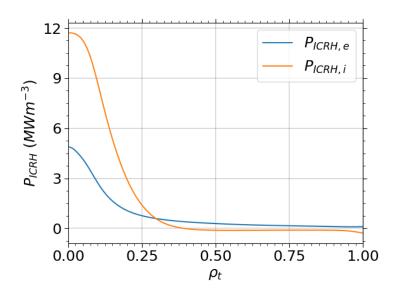

Integrated Modeling: 1.5D flux-matching transport solver →
 ASTRA [3]

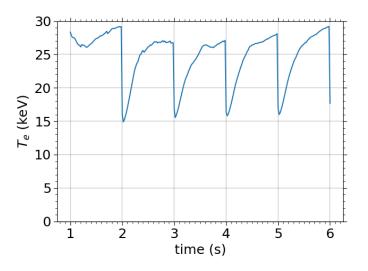
- Integrated Modeling: 1.5D flux-matching transport solver →
 ASTRA [3]
 - ❖ ICRH deposition → interpretive profiles from TRANSP+TORIC

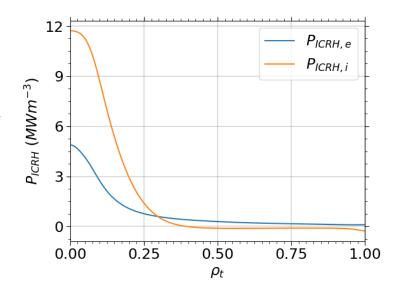


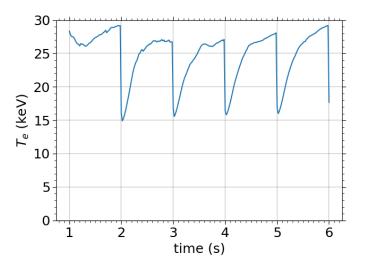

04/24/2025 — US Transport Task Force

- Integrated Modeling: 1.5D flux-matching transport solver →
 ASTRA [3]
 - ❖ ICRH deposition → interpretive profiles from TRANSP+TORIC
 - ❖ Other power terms → analytical formulae

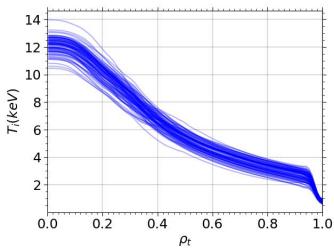


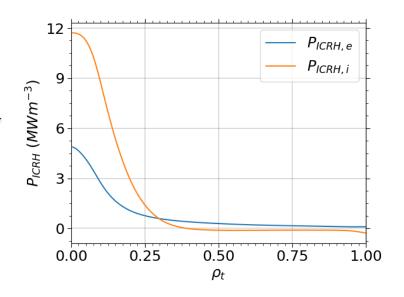

- Integrated Modeling: 1.5D flux-matching transport solver →
 ASTRA [3]
 - ❖ ICRH deposition → interpretive profiles from TRANSP+TORIC
 - ❖ Other power terms → analytical formulae
 - ❖ Sawteeth → Porcelli + Kadomtsev model for period and inversion radius

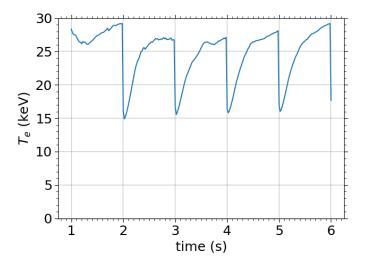

- Integrated Modeling: 1.5D flux-matching transport solver →
 ASTRA [3]
 - ❖ ICRH deposition → interpretive profiles from TRANSP+TORIC
 - ❖ Other power terms → analytical formulae
 - ❖ Sawteeth → Porcelli + Kadomtsev model for period and inversion radius
- Impurities → uniform radial concentration, no transport predicted



21


- Integrated Modeling: 1.5D flux-matching transport solver →
 ASTRA [3]
 - ❖ ICRH deposition → interpretive profiles from TRANSP+TORIC
 - ❖ Other power terms → analytical formulae
 - ❖ Sawteeth → Porcelli + Kadomtsev model for period and inversion radius
- Impurities → uniform radial concentration, no transport predicted
- 3. ELMy H-modes assumed (upper boundary)





- Integrated Modeling: 1.5D flux-matching transport solver →
 ASTRA [3]
 - ❖ ICRH deposition → interpretive profiles from TRANSP+TORIC
 - ❖ Other power terms → analytical formulae
 - ❖ Sawteeth → Porcelli + Kadomtsev model for period and inversion radius
- Impurities → uniform radial concentration, no transport predicted
- 3. ELMy H-modes assumed (upper boundary)

[3] G. V. Pereverzev, P. N. Yushmanov, IPP report 5/98

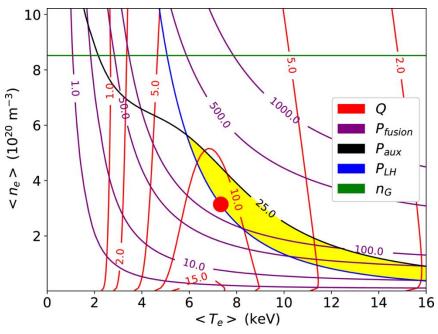
Outline of the talk

- Description of the simulations framework
- Plasma Reference Discharge (PRD) [12T, 8.7MA]
- Reduced field H-mode (H8) [8T, 5.7MA]
- Reduced current H-mode (H12) [12T, 6.5MA]

PRD: scalings predict Q=11. Sensitivity study to input parameters

SPARC PRD (primary reference discharge) → H-mode

Parameter	Value		
R_0	1.85 m		
а	0.57 m		
B_t	12.2 T		
I_p	8.7 MA		
q ₉₅	3.5		
q_{Uckan}^{st}	3		
f_{GW}	0.37		
$P_{ICRF,abs}$	11 MW		
$\langle n_e \rangle$	$3x10^{20} m^{-3}$		


PRD: scalings predict Q=11. Sensitivity study to input parameters

SPARC PRD (primary reference discharge) → H-mode

Parameter	Value
R_0	1.85 m
а	0.57 m
B_t	12.2 T
I_p	8.7 MA
q_{95}	3.5
q_{Uckan}^{st}	3
f_{GW}	0.37
$P_{ICRF,abs}$	11 MW
$\langle n_e \rangle$	$3x10^{20} m^{-3}$

- Extensive study on PRD with low and high-fidelity models [4], [5]
- Q=11 and $P_{fus} = 140MW$ from experimental scalings [4]

[4] A. Creely et al., J. Plasma Phys. (2020), vol. 86

Permuted input parameters: f_{DT} , f_{W} , f_{W} , $f_{e,top}$, f_{top} , f_{top}

Random sampling of input parameters.

Permuted input parameters: f_{DT} , f_{W} , f_{U} ,

Random sampling of input parameters.

• Uncertain parameters affecting performance:

> DT (50-50%) concentration

> W concentration

> T_i/T_e at the top of pedestal

> p_{top}/p_{EPED} Effect on fusion rate and transport by dilution

Effect on radiation

Effect on fusion power and ITG stability

Effect on overall confinement from pedestal

Permuted input parameters: f_{DT} , f_{W} , f_{U} ,

Random sampling of input parameters.

• Uncertain parameters affecting performance:

> DT (50-50%) concentration

> W concentration

> T_i/T_e at the top of pedestal

> p_{top}/p_{EPED} Effect on fusion rate and transport by dilution

Effect on radiation

Effect on fusion power and ITG stability

Effect on overall confinement from pedestal

	f_W	f_{DT}	$T_{i/_{T_e}}$ top	p_{top}/p_{EPED}
reference	1.5e-5	0.85	1	1
range	[1.5e-5, 3.5e-4]	[0.8, 0.875]	[0.8, 1.2]	[0.8, 1.2]

Overall >1400 simulations, 90k CPUh (with ICRH and density scans)

Permuted input parameters: f_{DT} , f_{W} , f_{W} , $f_{e,top}$, f_{top} , f_{top}

Random sampling of input parameters.

 Uncertain parameters affecting performance: 	→ Effect on fusion rate and transport by dilution
DT (50-50%) concentrationW concentration	→ Effect on radiation
$rac{T_i}{T_e}$ at the top of pedestal ————————————————————————————————————	→ Effect on fusion power and ITG stability
$> \frac{p_{top}}{p_{EPED}}$	→ Effect on overall confinement from pedestal

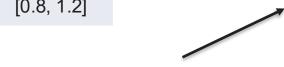
	f_W	f_{DT}	$T_{i}/_{T_{e}}$ top	$p_{top}/p_{\scriptscriptstyle EPED}$
reference	1.5e-5	0.85	1	1
range	[1.5e-5, 3.5e-4]	[0.8, 0.875]	[0.8, 1.2]	[0.8, 1.2]

Notes

 In reality ICRH power and density affect the W concentration

Overall >1400 simulations, 90k CPUh (with ICRH and density scans)

Permuted input parameters: f_{DT} , f_{W} , f_{W} , $f_{e,top}$, f_{top} , f_{top}


Random sampling of input parameters.

• Uncertain parameters affecting performance: \Rightarrow DT (50-50%) concentration \Rightarrow W concentration \Rightarrow $T_i/_{T_e}$ at the top of pedestal \Rightarrow Effect on fusion rate and transport by dilution

Effect on radiation

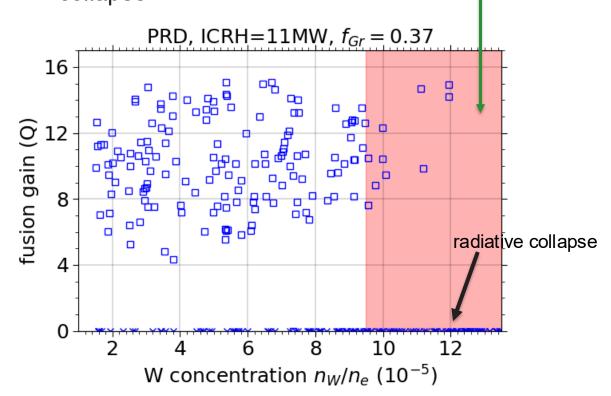
Effect on fusion power and ITG stability \Rightarrow $p_{top}/_{p_{EPED}}$ Effect on overall confinement from pedestal

	f_W	f_{DT}	$T_{i}/_{T_{e}}$ top	$p_{top}/p_{\scriptscriptstyle EPED}$
reference	1.5e-5	0.85	1	1
range	[1.5e-5, 3.5e-4]	[0.8, 0.875]	[0.8, 1.2]	[0.8, 1.2]

Overall >1400 simulations, 90k CPUh (with ICRH and density scans)

Notes

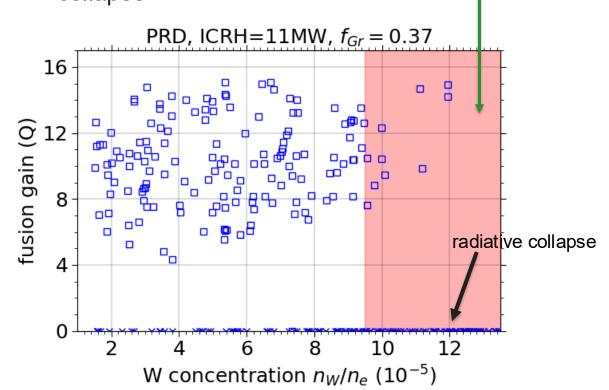
- In reality ICRH power and density affect the W concentration
- The effect of density on exhaust has not been addressed here

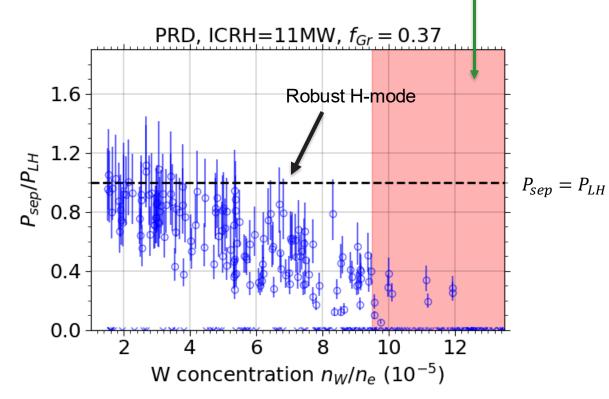

W radiation reduces H-mode robustness

- 284 simulations with $P_{ICRH} = 11MW$ and $f_{Gr} = 0.37$
- 75% of simulations "survived" the W radiation

W radiation reduces H-mode robustness

- 284 simulations with $P_{ICRH} = 11MW$ and $f_{Gr} = 0.37$
- 75% of simulations "survived" the W radiation

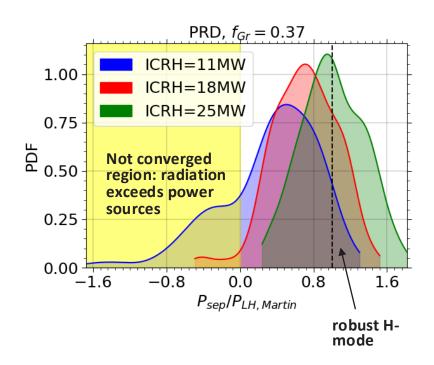

For W concentration above a certain threshold
 → few stable plasma is found → radiative collapse


W radiation reduces H-mode robustness

- 284 simulations with $P_{ICRH} = 11MW$ and $f_{Gr} = 0.37$
- 75% of simulations "survived" the W radiation

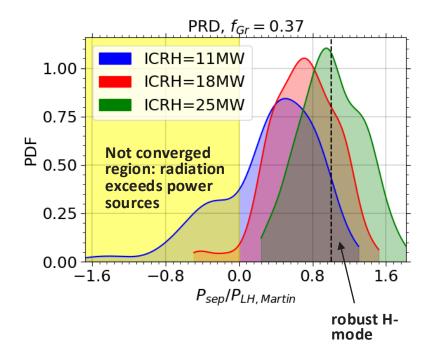
For W concentration above a certain threshold
 → few stable plasma is found → radiative collapse

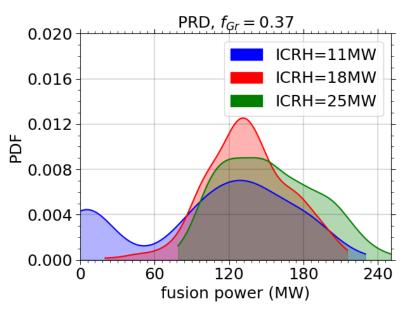
❖ W increases radiation → lower P_{sep} → lower P_{LH} , where P_{LH} is predicted by Martin scaling [6] (30% error bars)


[6] Y R Martin et al 2008 J. Phys.: Conf. Ser. 123

PRD: scan of P_{ICRH} . High power \rightarrow Q~5 and robust H-mode

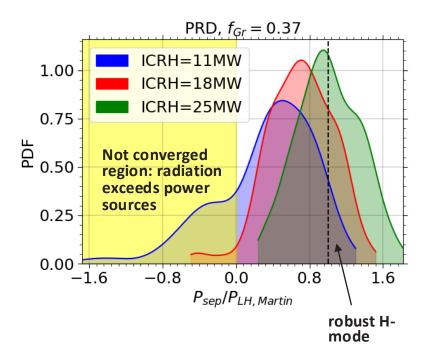
Scan of ICRH power → 851 simulations

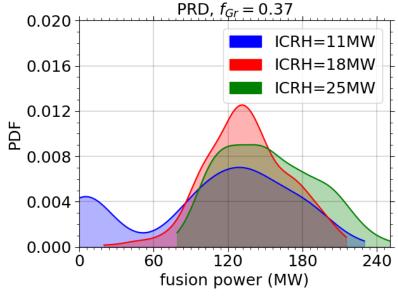

PRD: scan of P_{ICRH} . High power \rightarrow Q~5 and robust H-mode

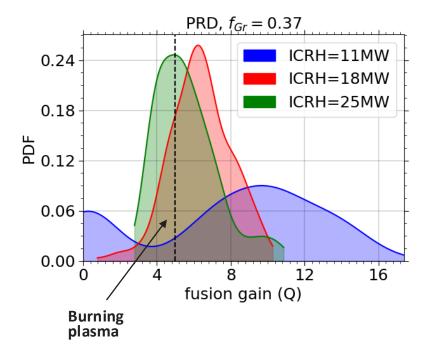

- Scan of ICRH power → 851 simulations
- Increased power:
 - more robust H-mode

PRD: scan of P_{ICRH} . High power \rightarrow Q~5 and robust H-mode

- Scan of ICRH power → 851 simulations
- Increased power:
 - more robust H-mode
 - Same fusion power (profiles stiffness)

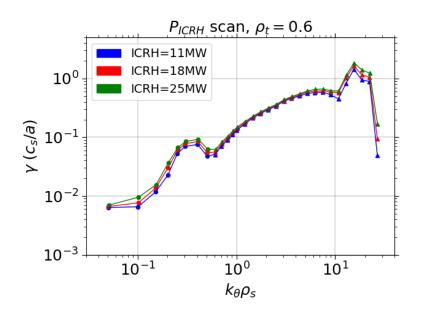


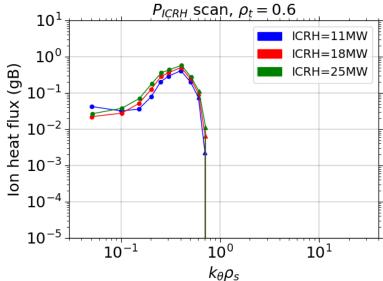


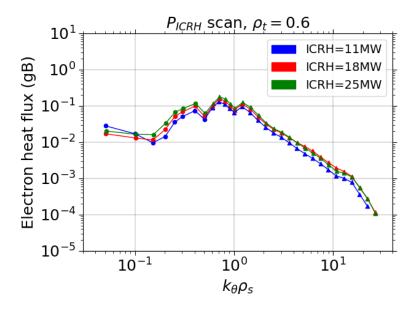

37

PRD: scan of P_{ICRH} . High power \rightarrow Q~5 and robust H-mode

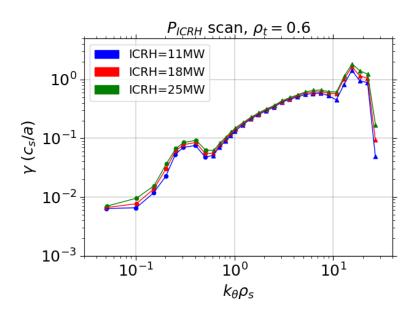
- Scan of ICRH power → 851 simulations
- Increased power:
 - more robust H-mode
 - Same fusion power (profiles stiffness)
 - ❖ Lower Q, but still ~5

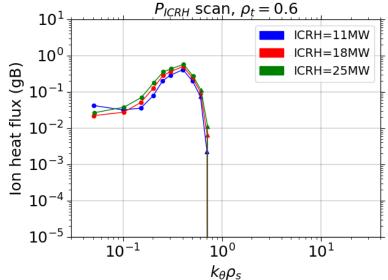


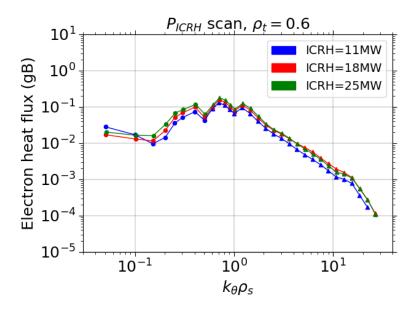




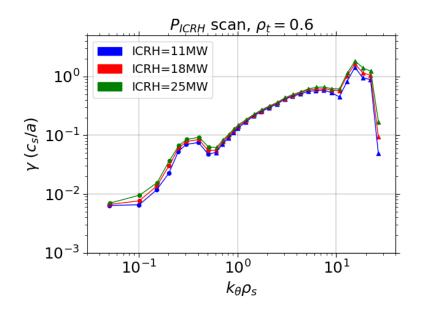
Statistical analysis → mean values of spectrum quantities

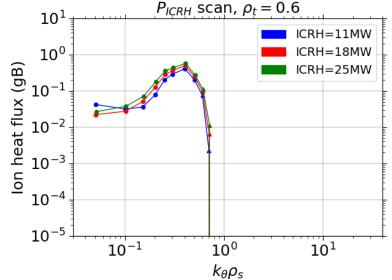

- Statistical analysis \rightarrow mean values of spectrum quantities
- Similar spectra \rightarrow profile stiffness and $P_{fus} \gg P_{ICRH}$

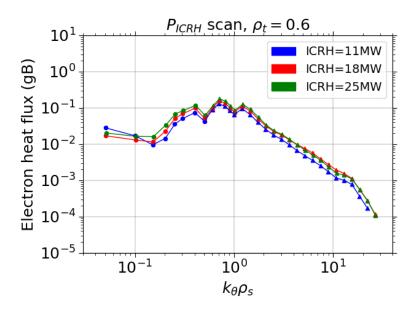




- Statistical analysis \rightarrow mean values of spectrum quantities
- Similar spectra \rightarrow profile stiffness and $P_{fus} \gg P_{ICRH}$
- ITG and ion-scale ($k_y \rho_t < 2$) dominant [7] \longrightarrow $Q_{e,k\rho < 2}/Q_{e,tot} \sim 0.92$

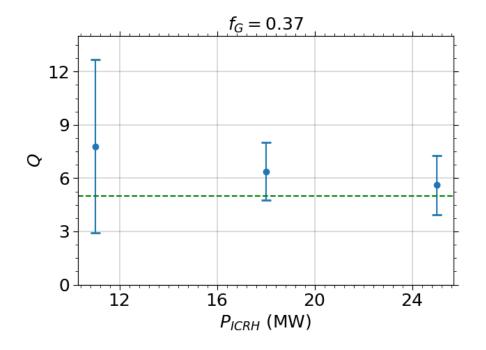


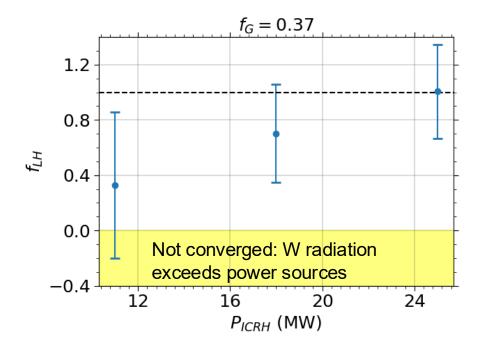




[7] C Holland et al JPP 2023

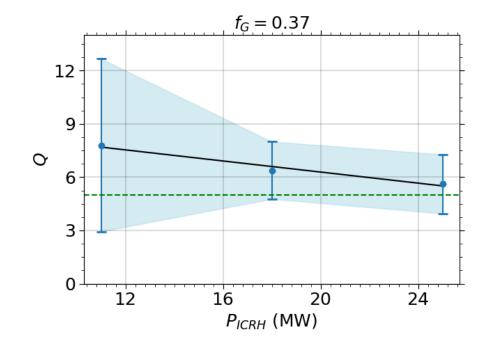
- Statistical analysis → mean values of spectrum quantities
- Similar spectra \rightarrow profile stiffness and $P_{fus} \gg P_{ICRH}$
- ITG and ion-scale ($k_y \rho_t < 2$) dominant [7] \longrightarrow $Q_{e,k\rho < 2}/Q_{e,tot} \sim 0.92$
- Almost only electrostatic modes \longrightarrow $Q_{es}/Q_{tot} > 0.95$

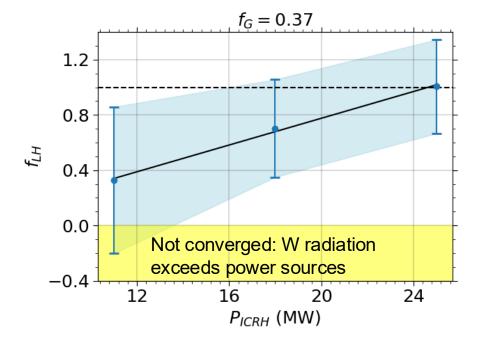




[7] C Holland et al JPP 2023

PRD: TAKEAWAYS

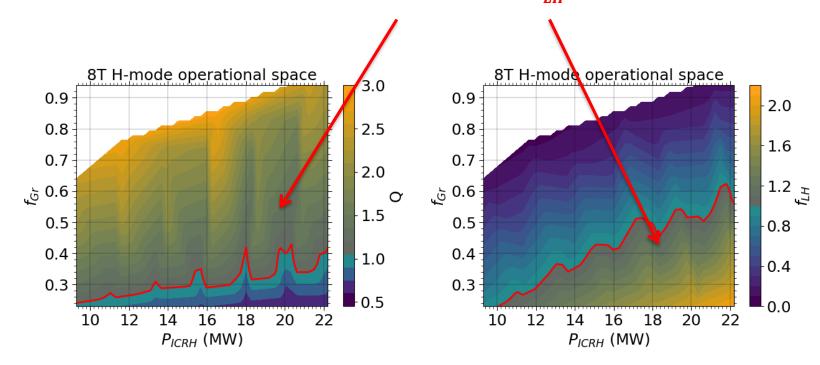

Good fusion performance → Q>2 (SPARC goal), often Q>5



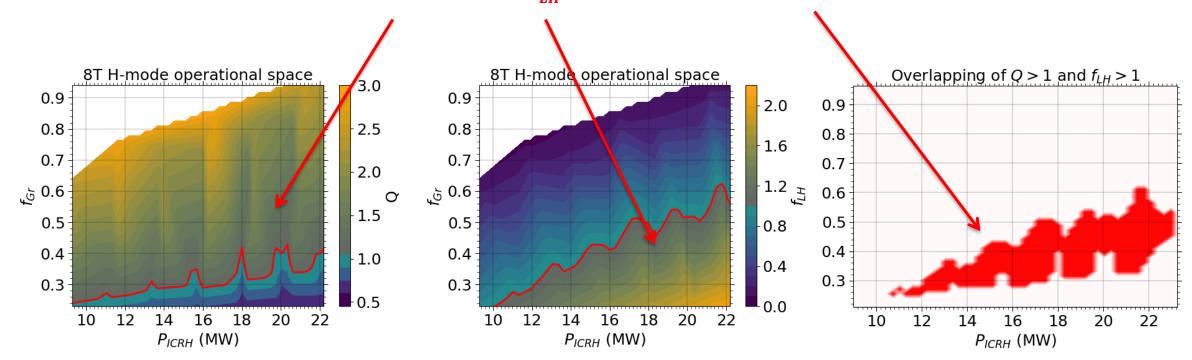
PRD: TAKEAWAYS

- Good fusion performance → Q>2 (SPARC goal), often Q>5
- At high ICRH power → Q~5, robust H-mode and reduced uncertainty

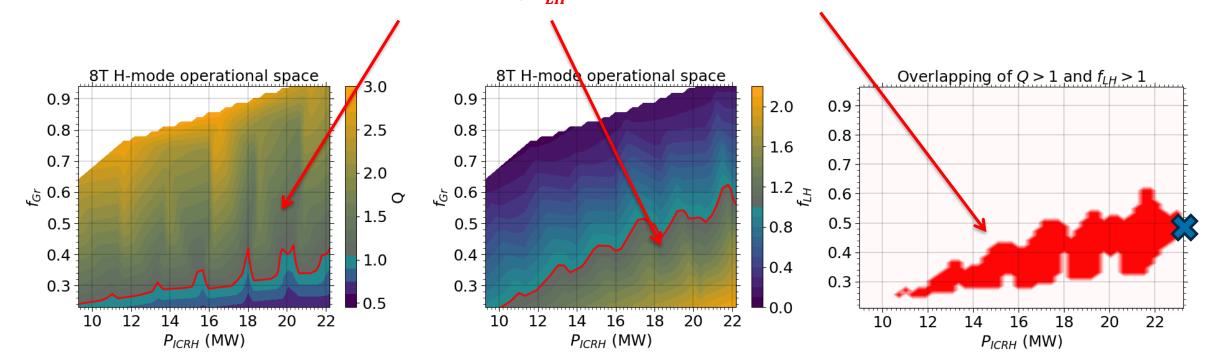
Outline of the talk

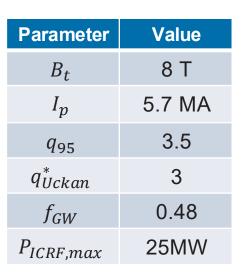

- Description of the simulations framework
- Plasma Reference Discharge (PRD) [12T, 8.7MA]
- Reduced field H-mode (H8) [8T, 5.7MA]
- Reduced current H-mode (H12) [12T, 6.5MA]

Alternative ICRH heating scheme $\rightarrow B_t = 8T$, H-minority


- Alternative ICRH heating scheme $\rightarrow B_t = 8T$, H-minority
- Lower engineering constraints/risks (low disruption energy, coil neutronic load, lower JxB forces)

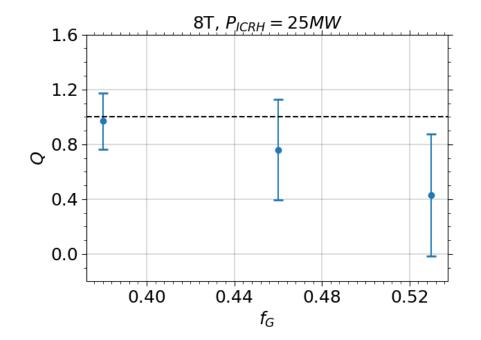
- Alternative ICRH heating scheme $\rightarrow B_t = 8T$, H-minority
- Lower engineering constraints/risks (low disruption energy, coil neutronic load, lower JxB forces)
- Lower fusion → SPARC early campaign (Q>1)

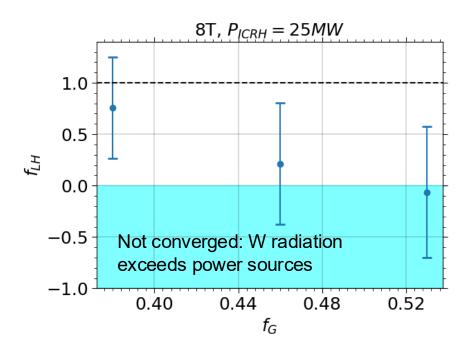

- Alternative ICRH heating scheme $\rightarrow B_t = 8T$, H-minority
- Lower engineering constraints/risks (low disruption energy, coil neutronic load, lower JxB forces)
- Lower fusion → SPARC early campaign (Q>1)
- Span the operational space \rightarrow Q>1 and $^{P_{sep}}/_{P_{LH}} > 1$



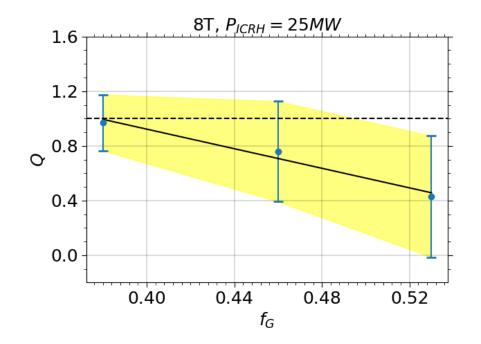
- Alternative ICRH heating scheme $\rightarrow B_t = 8T$, H-minority
- Lower engineering constraints/risks (low disruption energy, coil neutronic load, lower JxB forces)
- Lower fusion → SPARC early campaign (Q>1)
- Span the operational space \rightarrow Q>1 and $^{P_{sep}}/_{P_{LH}} > 1 \rightarrow$ Breakeven relevant

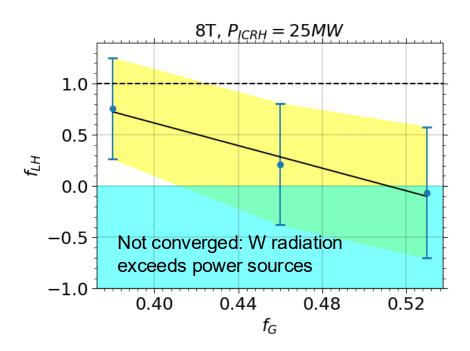
- Alternative ICRH heating scheme $\rightarrow B_t = 8T$, H-minority
- Lower engineering constraints/risks (low disruption energy, coil neutronic load, lower JxB forces)
- Lower fusion → SPARC early campaign (Q>1)
- Span the operational space \rightarrow Q>1 and $\frac{P_{sep}}{P_{IH}} > 1 \rightarrow$ Breakeven relevant

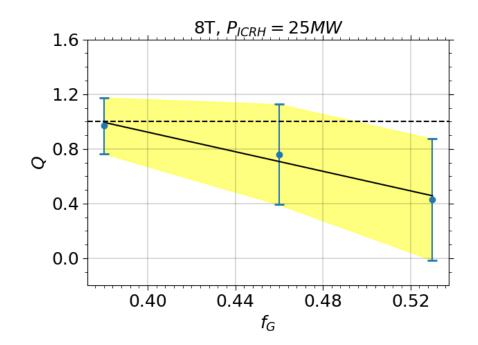


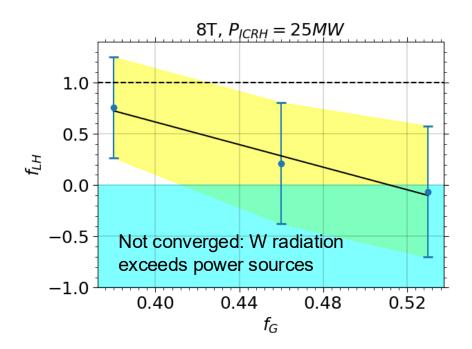


192 simulations with $P_{ICRH}=25MW$ and $f_{Gr}=0.48$


04/24/2025


- 192 simulations with $P_{ICRH}=25MW$ and $f_{Gr}=0.48$
- Starting from this database \rightarrow scan in $n_{e,ped}$ (~600 simulations, 40k CPUh).




- 192 simulations with $P_{ICRH}=25MW$ and $f_{Gr}=0.48$
- Starting from this database \rightarrow scan in $n_{e,ped}$ (~600 simulations, 40k CPUh).
- At low density → Marginal Q~1, robust H-mode and reduced uncertainty

- 192 simulations with $P_{ICRH}=25MW$ and $f_{Gr}=0.48$
- Starting from this database \rightarrow scan in $n_{e,ped}$ (~600 simulations, 40k CPUh).
- At low density → Marginal Q~1, robust H-mode and reduced uncertainty
- Lower fusion than PRD → W radiation plays a big role for H-mode robustness

Outline of the talk

- Description of the the simulations framework
- Plasma Reference Discharge (PRD) [12T, 8.7MA]
- Reduced field H-mode (H8) [8T, 5.7MA]
- Reduced current H-mode (H12) [12T, 6.5MA]

Exploration of operational space \rightarrow reduced current H-mode

- Span the operational space (current, field, density, power) → additional scenario with robust:
 - ightharpoonup Q > 1
 - $\rightarrow f_{LH} > 1$

Exploration of operational space \rightarrow reduced current H-mode

Span the operational space (current, field, density, power) → additional scenario with robust:

$$\rightarrow$$
 Q > 1

$$\rightarrow f_{LH} > 1$$

Low current H-mode with:

$$\rightarrow$$
 $B_T = 12.2T$ (fixed for ICRH coupling)

$$I_P = 6.5MA$$

Parameter	Value
B_t	12.2 T
I_p	6.5 MA
q_{95}	4.8
q_{Uckan}^{st}	3.6
f_{Gr}	0.28
$P_{ICRF,max}$	25 MW

Sensitivity study of Q>1 and $f_{LH} > 1$ robustness \rightarrow 4D scan:

Sensitivity study of Q>1 and $f_{LH} > 1$ robustness \rightarrow 4D scan:

Effect on:

- Performance
- H-mode robustness

	Scan ranges
I_p	[5.5 - 6.5] MA
$n_{e,top}$	[1.8 - 3.3] $10^{20} m^{-3}$
f_W	[1.5 - 13.5] 10^{-5}
P _{ICRH}	[15 - 25] MW

Sensitivity study of Q>1 and $f_{LH} > 1$ robustness \rightarrow 4D scan:

Effect on:

- Performance
- H-mode robustness

	Scan ranges
I_p	[5.5 - 6.5] MA
$n_{e,top}$	[1.8 - 3.3] $10^{20} m^{-3}$
f_W	[1.5 - 13.5] 10^{-5}
P _{ICRH}	[15 - 25] MW

567 simulations, ~40k CPUh

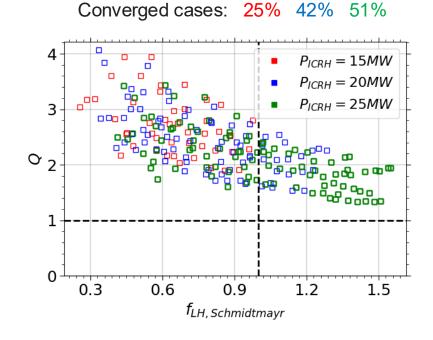
• Sensitivity study of Q>1 and $f_{LH} > 1$ robustness \rightarrow 4D scan:

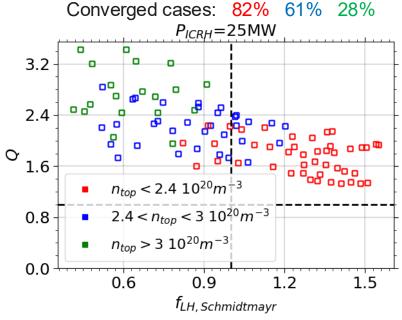
Effect on:

- Performance
- H-mode robustness

	Scan ranges
I_p	[5.5 - 6.5] MA
$n_{e,top}$	[1.8 - 3.3] $10^{20}m^{-3}$
f_W	[1.5 - 13.5] 10^{-5}
P _{ICRH}	[15 - 25] MW

- 567 simulations, ~40k CPUh
- ~40% of total simulations converged


• Sensitivity study of Q>1 and $f_{LH} > 1$ robustness \rightarrow 4D scan:



- Effect on:
- Performance
- H-mode robustness

	Scan ranges
I_p	[5.5 - 6.5] MA
$n_{e,top}$	[1.8 - 3.3] $10^{20}m^{-3}$
f_W	[1.5 - 13.5] 10^{-5}
P _{ICRH}	[15 - 25] MW

- 567 simulations, ~40k CPUh
- ~40% of total simulations converged
- Optimal operation → High P_{ICRH} and low density

Reduced current H-mode: possible safer q_{95} operating regime

• Q shows a linear trend with I_p

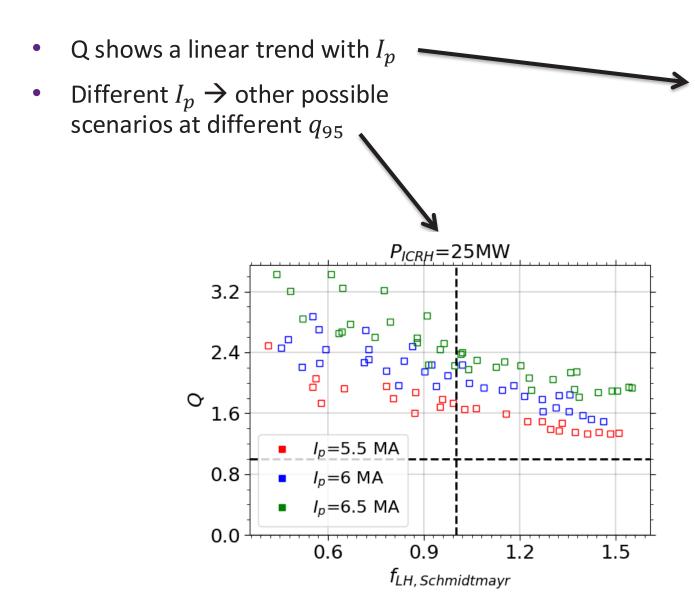
Converged cases: 40% 54% 59% P_{ICRH} =25MW I_p =5.5 MA I_p =6 MA I_p =6.5 MA

PRD

4.2

4.8

 q_{95}


5.4


3.6

0.8

0.0

Reduced current H-mode: possible safer q_{95} operating regime

Summary and outlook

Summary:

- Database of H-mode simulations $\rightarrow Q$ depends strongly on input parameters
- density, P_{ICRH} and P_{rad} affect H-mode \rightarrow Biggest uncertainty is on H-mode access and sustainment
- PRD H-mode \rightarrow overall high performance (Q>2 and P_{fus} >50MW)
- Low field H-mode → candidate for breakeven at low density / W concentration
- Low current H-mode \rightarrow resilient to radiation, best H-mode for Q>1, multiple q_{95} solutions

Outlook:

- Improve pedestal model (SOL reduced model)
- Increase fidelity of simulations (Impurity transport, radiation modeling, rotation)
- Other results (not shown):
 - Most impactful parameters on Q ightarrow $^{T_{e,top}}/_{T_{i,top}}$ and $^{p_{top}}/_{p_{EPED}}$