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• Needs for extrapolations/predictions

• Important predictions for future machines success → 𝑃𝑓𝑢𝑠
and Q

• However, simulations need a certain number of 
assumptions:
➢ Are they realistic?

➢ Can they be operationally controlled?

➢ How strongly do they affect performance?

What do we expect in future machines?

GOAL → Study effect of varying input assumptions on fusion performance
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Sensitivity study performed for 3 SPARC H-modes

B=12T, 𝑰𝒑=8.7MA (PRD)

B=8T, 𝑰𝒑=5.7MA (H8)

B=12T, 𝑰𝒑=6.5 MA (H12)

Reference H-mode, to 
reach high 𝑃𝑓𝑢𝑠 and Q
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Sensitivity study performed for 3 SPARC H-modes

B=12T, 𝑰𝒑=8.7MA (PRD)

B=8T, 𝑰𝒑=5.7MA (H8)

B=12T, 𝑰𝒑=6.5 MA (H12)

submitted to NF, 
published on arXiv
(arXiv:2502.00187)

Reference H-mode, to 
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Low-risk H-mode with 
alternative ICRH 
scheme

H-mode for robust Q>1 
operation

https://arxiv.org/abs/2502.00187
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Sensitivity study performed for 3 SPARC H-modes

B=12T, 𝑰𝒑=8.7MA (PRD)

B=8T, 𝑰𝒑=5.7MA (H8)

B=12T, 𝑰𝒑=6.5 MA (H12)

submitted to NF, 
published on arXiv
(arXiv:2502.00187)

Explored in this 
presentation

Reference H-mode, to 
reach high 𝑃𝑓𝑢𝑠 and Q

Low-risk H-mode with 
alternative ICRH 
scheme

H-mode for robust Q>1 
operation

https://arxiv.org/abs/2502.00187


04/24/2025 1204/24/2025 – US Transport Task Force

• Description of the simulations framework

• Plasma Reference Discharge (PRD) [12T, 8.7MA]

• Reduced field H-mode (H8) [8T, 5.7MA]

• Reduced current H-mode (H12) [12T, 6.5MA]

Outline of the talk
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• Available models:

➢ High fidelity → slow

➢ Low fidelity → poor reliability

➢ Medium fidelity → time / reliability compromise

H-modes database generated by using TGLF+EPED-NN
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[1] G.M. Staebler et al 2021 Nucl. Fusion 61 116007
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❖ Core transport → TGLF-SAT2: quasi-linear transport model [1]
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• Available models:

➢ High fidelity → slow

➢ Low fidelity → poor reliability

➢ Medium fidelity → time / reliability compromise

H-modes database generated by using TGLF+EPED-NN

❖ Core transport → TGLF-SAT2: quasi-linear transport model [1]

❖ Pedestal stability → NN derived from EPED [2] for SPARC H-modes

[1] G.M. Staebler et al 2021 Nucl. Fusion 61 116007      [2] P.B. Snyder et al 2011 Nucl. Fusion 51 103016
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TGLF and EPED-NN coupled in ASTRA

1. Integrated Modeling: 1.5D flux-matching transport solver →
ASTRA [3]

[3] G. V. Pereverzev, P. N. Yushmanov, IPP report 5/98 
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• Description of the simulations framework

• Plasma Reference Discharge (PRD) [12T, 8.7MA]

• Reduced field H-mode (H8) [8T, 5.7MA]

• Reduced current H-mode (H12) [12T, 6.5MA]

Outline of the talk
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• SPARC PRD (primary reference 
discharge) → H-mode

PRD: scalings predict Q=11. Sensitivity study to input parameters

Parameter Value

𝑅0 1.85 m

𝑎 0.57 m

𝐵𝑡 12.2 T

𝐼𝑝 8.7 MA

𝑞95 3.5

𝑞𝑈𝑐𝑘𝑎𝑛
∗ 3

𝑓𝐺𝑊 0.37

𝑃𝐼𝐶𝑅𝐹,𝑎𝑏𝑠 11 MW

𝑛𝑒 3x1020𝑚−3



04/24/2025 2604/24/2025 – US Transport Task Force

• SPARC PRD (primary reference 
discharge) → H-mode

PRD: scalings predict Q=11. Sensitivity study to input parameters

Parameter Value

𝑅0 1.85 m

𝑎 0.57 m

𝐵𝑡 12.2 T

𝐼𝑝 8.7 MA

𝑞95 3.5

𝑞𝑈𝑐𝑘𝑎𝑛
∗ 3

𝑓𝐺𝑊 0.37

𝑃𝐼𝐶𝑅𝐹,𝑎𝑏𝑠 11 MW

𝑛𝑒 3x1020𝑚−3

• Extensive study on PRD with 
low and high-fidelity models [4], 
[5]

• Q=11 and 𝑃𝑓𝑢𝑠 = 140𝑀𝑊 from 
experimental scalings [4]

[4] A. Creely et al., J. Plasma Phys. (2020), vol. 86        [5] P. Rodriguez-Fernandez et al (2022) Nucl. Fusion 62
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Permuted input parameters: 𝑓𝐷𝑇, 𝑓𝑊, ൗ
𝑇𝑖,𝑡𝑜𝑝

𝑇𝑒,𝑡𝑜𝑝, ൗ
𝑝𝑡𝑜𝑝

𝑝𝐸𝑃𝐸𝐷

• Random sampling of input parameters.
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Effect on radiation

Effect on fusion rate and transport by dilution

Effect on fusion power and ITG stability

Effect on overall confinement from pedestal
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Permuted input parameters: 𝑓𝐷𝑇, 𝑓𝑊, ൗ
𝑇𝑖,𝑡𝑜𝑝

𝑇𝑒,𝑡𝑜𝑝, ൗ
𝑝𝑡𝑜𝑝

𝑝𝐸𝑃𝐸𝐷

• Random sampling of input parameters.

• Uncertain parameters affecting performance:

➢ DT (50-50%) concentration

➢ W concentration

➢ ൗ𝑻𝒊 𝑻𝒆 at the top of pedestal

➢ ൗ
𝒑𝒕𝒐𝒑

𝒑𝑬𝑷𝑬𝑫

Effect on radiation

Effect on fusion rate and transport by dilution

Effect on fusion power and ITG stability

Effect on overall confinement from pedestal

𝒇𝑾 𝒇𝑫𝑻 ൗ
𝑻𝒊

𝑻𝒆
𝒕𝒐𝒑 ൗ

𝒑𝒕𝒐𝒑
𝒑𝑬𝑷𝑬𝑫

reference 1.5e-5 0.85 1 1

range [1.5e-5, 3.5e-4] [0.8, 0.875] [0.8, 1.2] [0.8, 1.2]

• Overall >1400 simulations, 90k CPUh (with ICRH and density scans)
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Permuted input parameters: 𝑓𝐷𝑇, 𝑓𝑊, ൗ
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• Random sampling of input parameters.

• Uncertain parameters affecting performance:

➢ DT (50-50%) concentration

➢ W concentration

➢ ൗ𝑻𝒊 𝑻𝒆 at the top of pedestal
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• Overall >1400 simulations, 90k CPUh (with ICRH and density scans)

Notes:

• In reality ICRH power and 

density affect the W 

concentration
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Permuted input parameters: 𝑓𝐷𝑇, 𝑓𝑊, ൗ
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• Random sampling of input parameters.

• Uncertain parameters affecting performance:

➢ DT (50-50%) concentration

➢ W concentration

➢ ൗ𝑻𝒊 𝑻𝒆 at the top of pedestal

➢ ൗ
𝒑𝒕𝒐𝒑
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Effect on radiation

Effect on fusion rate and transport by dilution
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𝑻𝒊

𝑻𝒆
𝒕𝒐𝒑 ൗ
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reference 1.5e-5 0.85 1 1

range [1.5e-5, 3.5e-4] [0.8, 0.875] [0.8, 1.2] [0.8, 1.2]

• Overall >1400 simulations, 90k CPUh (with ICRH and density scans)

Notes:

• In reality ICRH power and 

density affect the W 

concentration

• The effect of density on 

exhaust has not been 

addressed here
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W radiation reduces H-mode robustness

• 284 simulations with 𝑃𝐼𝐶𝑅𝐻 = 11𝑀𝑊 and 𝑓𝐺𝑟 = 0.37
• 75% of simulations “survived” the W radiation 
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❖ For W concentration above a certain threshold 
→ few stable plasma is found → radiative 
collapse

W radiation reduces H-mode robustness

radiative collapse

• 284 simulations with 𝑃𝐼𝐶𝑅𝐻 = 11𝑀𝑊 and 𝑓𝐺𝑟 = 0.37
• 75% of simulations “survived” the W radiation 
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❖ For W concentration above a certain threshold 
→ few stable plasma is found → radiative 
collapse

W radiation reduces H-mode robustness

❖W increases radiation → lower 𝑃𝑠𝑒𝑝 → lower ൗ
𝑃𝑠𝑒𝑝

𝑃𝐿𝐻, 

where 𝑃𝐿𝐻 is predicted by Martin scaling [6] (30% error 
bars)

Robust H-mode

radiative collapse

[6] Y R Martin et al 2008 J. Phys.: Conf. Ser. 123 

𝑃𝑠𝑒𝑝 = 𝑃𝐿𝐻

• 284 simulations with 𝑃𝐼𝐶𝑅𝐻 = 11𝑀𝑊 and 𝑓𝐺𝑟 = 0.37
• 75% of simulations “survived” the W radiation 
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• Scan of ICRH power → 851 simulations

PRD: scan of 𝑃𝐼𝐶𝑅𝐻. High power → Q~5 and robust H-mode
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• Scan of ICRH power → 851 simulations

• Increased power:

❖ more robust H-mode

PRD: scan of 𝑃𝐼𝐶𝑅𝐻. High power → Q~5 and robust H-mode

robust H-
mode

Not converged 
region: radiation 
exceeds power 
sources
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• Scan of ICRH power → 851 simulations

• Increased power:

❖ more robust H-mode

❖ Same fusion power (profiles stiffness)

PRD: scan of 𝑃𝐼𝐶𝑅𝐻. High power → Q~5 and robust H-mode

robust H-
mode

Not converged 
region: radiation 
exceeds power 
sources
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• Scan of ICRH power → 851 simulations

• Increased power:

❖ more robust H-mode

❖ Same fusion power (profiles stiffness)

❖ Lower Q, but still ~5

PRD: scan of 𝑃𝐼𝐶𝑅𝐻. High power → Q~5 and robust H-mode

Burning 
plasma

robust H-
mode

Not converged 
region: radiation 
exceeds power 
sources
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• Statistical analysis →mean values of spectrum quantities

PRD is robustly characterized by ITG turbulence
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• Statistical analysis →mean values of spectrum quantities

• Similar spectra → profile stiffness and 𝑃𝑓𝑢𝑠 ≫ 𝑃𝐼𝐶𝑅𝐻

PRD is robustly characterized by ITG turbulence
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• Statistical analysis →mean values of spectrum quantities

• Similar spectra → profile stiffness and 𝑃𝑓𝑢𝑠 ≫ 𝑃𝐼𝐶𝑅𝐻

• ITG and ion-scale (𝑘𝑦𝜌𝑡 < 2) dominant [7]

PRD is robustly characterized by ITG turbulence

[7] C Holland et al JPP 2023

൘
𝑄𝑒,𝑘𝜌<2

𝑄𝑒,𝑡𝑜𝑡
~0.92
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• Statistical analysis →mean values of spectrum quantities

• Similar spectra → profile stiffness and 𝑃𝑓𝑢𝑠 ≫ 𝑃𝐼𝐶𝑅𝐻

• ITG and ion-scale (𝑘𝑦𝜌𝑡 < 2) dominant [7]

• Almost only electrostatic modes

PRD is robustly characterized by ITG turbulence

[7] C Holland et al JPP 2023

൘
𝑄𝑒,𝑘𝜌<2

𝑄𝑒,𝑡𝑜𝑡
~0.92

ൗ
𝑄𝑒𝑠

𝑄𝑡𝑜𝑡
> 0.95
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• Good fusion performance → Q>2 (SPARC goal), often Q>5

PRD: TAKEAWAYS

Not converged: W radiation 

exceeds power sources
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• Good fusion performance → Q>2 (SPARC goal), often Q>5

• At high ICRH power → Q~5, robust H-mode and reduced uncertainty

PRD: TAKEAWAYS

Not converged: W radiation 

exceeds power sources
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• Description of the simulations framework

• Plasma Reference Discharge (PRD) [12T, 8.7MA]

• Reduced field H-mode (H8) [8T, 5.7MA]

• Reduced current H-mode (H12) [12T, 6.5MA]

Outline of the talk
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• Alternative ICRH heating scheme → 𝐵𝑡 = 8𝑇, H-minority

Reduced field H-mode: candidate scenario for Q>1
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• Alternative ICRH heating scheme → 𝐵𝑡 = 8𝑇, H-minority

• Lower engineering constraints/risks (low disruption energy, coil neutronic load, 
lower JxB forces)

Reduced field H-mode: candidate scenario for Q>1
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• Alternative ICRH heating scheme → 𝐵𝑡 = 8𝑇, H-minority

• Lower engineering constraints/risks (low disruption energy, coil neutronic load, 
lower JxB forces)

• Lower fusion → SPARC early campaign (Q>1)

Reduced field H-mode: candidate scenario for Q>1
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• Alternative ICRH heating scheme → 𝐵𝑡 = 8𝑇, H-minority

• Lower engineering constraints/risks (low disruption energy, coil neutronic load, 
lower JxB forces)

• Lower fusion → SPARC early campaign (Q>1)

• Span the operational space → Q>1 and ൗ
𝑷𝒔𝒆𝒑

𝑷𝑳𝑯
> 𝟏

Reduced field H-mode: candidate scenario for Q>1
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• Alternative ICRH heating scheme → 𝐵𝑡 = 8𝑇, H-minority

• Lower engineering constraints/risks (low disruption energy, coil neutronic load, 
lower JxB forces)

• Lower fusion → SPARC early campaign (Q>1)

• Span the operational space → Q>1 and ൗ
𝑷𝒔𝒆𝒑

𝑷𝑳𝑯
> 𝟏→ Breakeven relevant

Reduced field H-mode: candidate scenario for Q>1
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• Alternative ICRH heating scheme → 𝐵𝑡 = 8𝑇, H-minority

• Lower engineering constraints/risks (low disruption energy, coil neutronic load, 
lower JxB forces)

• Lower fusion → SPARC early campaign (Q>1)

• Span the operational space → Q>1 and ൗ
𝑷𝒔𝒆𝒑

𝑷𝑳𝑯
> 𝟏→ Breakeven relevant

Reduced field H-mode: candidate scenario for Q>1 Parameter Value

𝐵𝑡 8 T

𝐼𝑝 5.7 MA

𝑞95 3.5

𝑞𝑈𝑐𝑘𝑎𝑛
∗ 3

𝑓𝐺𝑊 0.48

𝑃𝐼𝐶𝑅𝐹,𝑚𝑎𝑥 25MW
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• 192 simulations with 𝑃𝐼𝐶𝑅𝐻 = 25𝑀𝑊 and 𝑓𝐺𝑟 = 0.48

Reduced field H-mode: low density increases H-mode robustness
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• 192 simulations with 𝑃𝐼𝐶𝑅𝐻 = 25𝑀𝑊 and 𝑓𝐺𝑟 = 0.48

• Starting from this database → scan in 𝑛𝑒,𝑝𝑒𝑑 (~600 simulations, 40k CPUh).

Reduced field H-mode: low density increases H-mode robustness

Not converged: W radiation 

exceeds power sources
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• 192 simulations with 𝑃𝐼𝐶𝑅𝐻 = 25𝑀𝑊 and 𝑓𝐺𝑟 = 0.48

• Starting from this database → scan in 𝑛𝑒,𝑝𝑒𝑑 (~600 simulations, 40k CPUh).

• At low density →Marginal Q~1, robust H-mode and reduced uncertainty

Reduced field H-mode: low density increases H-mode robustness

Not converged: W radiation 

exceeds power sources
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• 192 simulations with 𝑃𝐼𝐶𝑅𝐻 = 25𝑀𝑊 and 𝑓𝐺𝑟 = 0.48

• Starting from this database → scan in 𝑛𝑒,𝑝𝑒𝑑 (~600 simulations, 40k CPUh).

• At low density →Marginal Q~1, robust H-mode and reduced uncertainty

• Lower fusion than PRD →W radiation plays a big role for H-mode robustness

Reduced field H-mode: low density increases H-mode robustness

Not converged: W radiation 

exceeds power sources
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• Description of the the simulations framework

• Plasma Reference Discharge (PRD) [12T, 8.7MA]

• Reduced field H-mode (H8) [8T, 5.7MA]

• Reduced current H-mode (H12) [12T, 6.5MA]

Outline of the talk
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Exploration of operational space → reduced current H-mode

• Span the operational space (current, field, density, power) → additional 
scenario with robust:
➢ Q > 1

➢ 𝑓𝐿𝐻 > 1
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Exploration of operational space → reduced current H-mode

• Span the operational space (current, field, density, power) → additional 
scenario with robust:
➢ Q > 1

➢ 𝑓𝐿𝐻 > 1

• Low current H-mode with:
➢ 𝐵𝑇 = 12.2𝑇 (fixed for ICRH coupling)

➢ 𝐼𝑃 = 6.5𝑀𝐴

Parameter Value

𝐵𝑡 12.2 T

𝐼𝑝 6.5 MA

𝑞95 4.8

𝑞𝑈𝑐𝑘𝑎𝑛
∗ 3.6

𝑓𝐺𝑟 0.28

𝑃𝐼𝐶𝑅𝐹,𝑚𝑎𝑥 25 MW



04/24/2025 5904/24/2025 – US Transport Task Force

• Sensitivity study of Q>1 and 𝑓𝐿𝐻 > 1 robustness → 4D scan:

Reduced current H-mode: Optimal candidate for Q>1
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• Sensitivity study of Q>1 and 𝑓𝐿𝐻 > 1 robustness → 4D scan:

➢ 𝑰𝒑
➢ 𝒏𝒆,𝒕𝒐𝒑
➢ 𝒇𝑾
➢ 𝑷𝑰𝑪𝑹𝑯

Reduced current H-mode: Optimal candidate for Q>1

Effect on:

• Performance

• H-mode robustness

Scan ranges

𝑰𝒑 [5.5 - 6.5] MA

𝒏𝒆,𝒕𝒐𝒑 [1.8 - 3.3] 𝟏𝟎𝟐𝟎𝒎−𝟑

𝒇𝑾 [1.5 - 13.5] 𝟏𝟎−𝟓

𝑷𝑰𝑪𝑹𝑯 [15 - 25] MW
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• Sensitivity study of Q>1 and 𝑓𝐿𝐻 > 1 robustness → 4D scan:

➢ 𝑰𝒑
➢ 𝒏𝒆,𝒕𝒐𝒑
➢ 𝒇𝑾
➢ 𝑷𝑰𝑪𝑹𝑯

• 567 simulations, ~40k CPUh

Reduced current H-mode: Optimal candidate for Q>1

Effect on:

• Performance

• H-mode robustness

Scan ranges

𝑰𝒑 [5.5 - 6.5] MA

𝒏𝒆,𝒕𝒐𝒑 [1.8 - 3.3] 𝟏𝟎𝟐𝟎𝒎−𝟑

𝒇𝑾 [1.5 - 13.5] 𝟏𝟎−𝟓

𝑷𝑰𝑪𝑹𝑯 [15 - 25] MW
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• Sensitivity study of Q>1 and 𝑓𝐿𝐻 > 1 robustness → 4D scan:

➢ 𝑰𝒑
➢ 𝒏𝒆,𝒕𝒐𝒑
➢ 𝒇𝑾
➢ 𝑷𝑰𝑪𝑹𝑯

• 567 simulations, ~40k CPUh

Reduced current H-mode: Optimal candidate for Q>1

Effect on:

• Performance

• H-mode robustness

Scan ranges

𝑰𝒑 [5.5 - 6.5] MA

𝒏𝒆,𝒕𝒐𝒑 [1.8 - 3.3] 𝟏𝟎𝟐𝟎𝒎−𝟑

𝒇𝑾 [1.5 - 13.5] 𝟏𝟎−𝟓

𝑷𝑰𝑪𝑹𝑯 [15 - 25] MW

• ~40% of total simulations 
converged
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• Sensitivity study of Q>1 and 𝑓𝐿𝐻 > 1 robustness → 4D scan:

➢ 𝑰𝒑
➢ 𝒏𝒆,𝒕𝒐𝒑
➢ 𝒇𝑾
➢ 𝑷𝑰𝑪𝑹𝑯

• 567 simulations, ~40k CPUh

Reduced current H-mode: Optimal candidate for Q>1

Effect on:

• Performance

• H-mode robustness

Scan ranges

𝑰𝒑 [5.5 - 6.5] MA

𝒏𝒆,𝒕𝒐𝒑 [1.8 - 3.3] 𝟏𝟎𝟐𝟎𝒎−𝟑

𝒇𝑾 [1.5 - 13.5] 𝟏𝟎−𝟓

𝑷𝑰𝑪𝑹𝑯 [15 - 25] MW

• ~40% of total simulations 
converged

• Optimal operation → High 
𝑃𝐼𝐶𝑅𝐻 and low density

Converged cases: 25%  42% 51% Converged cases: 82%  61% 28%
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• Q shows a linear trend with 𝐼𝑝

Reduced current H-mode: possible safer 𝑞95 operating regime

Converged cases: 40%  54% 59%

PRD
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• Q shows a linear trend with 𝐼𝑝

• Different 𝐼𝑝→ other possible 
scenarios at different 𝑞95

Reduced current H-mode: possible safer 𝑞95 operating regime

Converged cases: 40%  54% 59%

PRD
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Summary and outlook

❖ Summary:

• Database of H-mode simulations →𝑸 depends strongly on input parameters

• density, 𝑃𝐼𝐶𝑅𝐻 and 𝑃𝑟𝑎𝑑 affect H-mode → Biggest uncertainty is on H-mode access and 
sustainment

• PRD H-mode→ overall high performance (Q>2 and 𝑷𝒇𝒖𝒔>50MW)

• Low field H-mode → candidate for breakeven at low density / W concentration

• Low current H-mode → resilient to radiation, best H-mode for Q>1, multiple 𝒒𝟗𝟓 solutions

❖ Outlook:

• Improve pedestal model (SOL reduced model)

• Increase fidelity of simulations (Impurity transport, radiation modeling, rotation)

❖ Other results (not shown):

• Most impactful parameters on Q → ൗ
𝑻𝒆,𝒕𝒐𝒑

𝑻𝒊,𝒕𝒐𝒑
and ൗ

𝒑𝒕𝒐𝒑
𝒑𝑬𝑷𝑬𝑫
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