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ABSTRACT

= Core integrated modeling of tokamaks involves the multi-scale coupling of core transport solvers for
kinetic profile predictions, pedestal models, heating and current drive and MHD equilibrium codes, among
other 1mportant physics aspects. Transport solvers with quasilinear turbulence models are often the
bottleneck for the integrated simulations, representing most of the computational cost of self-consistent
steady-state plasma predictions, particularly for burning and reactor-relevant plasmas.

This work implements the PORTALS surrogate-based transport solver [1] into an integrated modeling
workflow that loops over “black-box-type” simulation codes that solve for pedestal (using a surrogate to
EPED [2] peeling-ballooning limits), Grad-Shafranov equilibrium, ion-cylotron range-of-frequencies
heating and Monte-Carlo alpha deposition. The latter physics aspects are resolved using interpretive

TRANSP [3].

This work demonstrates that this framework, named MAESTRO (Modular and Accelerated Engine for
Simulation of Transport and Reactor Optimization), can provide self-consistent steady-state solutions of
tokamak reactor cores with the full TGLF [4] reduced model for turbulent transport in a few dozen CPU
hours and with minimal user input. The improvements to the PORTALS solver, performed under the
SMARTS SciDAC partnership, are shown to provide an efficient, robust way to achieve steady-state
solutions leveraging uncertainty quantification and physics-guided optimization methods.

1. PORTALS: FLUX-MATCHING AS SURROGATE-BASED OPTIMIZATION

= Kinetic profiles (and hence fusion performance) can be predicted solving steady-state
transport equations:
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* Solving for the steady-state with delta-f transport
models 1s expensive with standard numerical
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" PORTALS [1] leverages surrogate-based optimization, suitable for expensive black-box
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2. DEVELOPMENTS FOR ROBUST QUASILINEAR PREDICTIONS

= Uncertainty quantification of flux evaluations i1s important to achieve fast convergence.

Flux variation from scan of inputs to
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* Enforcing positive-slope linear-mean GP for
diagonal terms of transport matrix — enforcing
Q; = [~o - a/Ly; far from training ranges.
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Flux variation from limited time
averaging in initial-value solvers [1]
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= At the expense of more
evaluations per iteration,
smoother convergence (as in
[6]) and better stopping criteria

reduce wall-time cost.
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3. INTEGRATED MODELING WITH NEW MAESTRO WORKFLOW

= Evaluating changes in equilibrium (e.g. g-profile, Agp,r), heating (e.g. Ohmic power, RF
species partition and peak location) and edge boundary condition (e.g. By aftecting p;,y,
W¢op) 18 Important for self-consistent plasma modeling.

= Similar to OMFIT STEP [7], MAESTRO loops over simulation codes (in beats) until self-
consistent solution 1s found with PORTALS, EPED NN [2, J. Hall Tue 2pm poster],
TRANSP [3] and FreeGS [8].
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4. FROM ENGINEERING PARAMETERS TO PLASMA

* Multi-channel flux-matching solutions using full TGLF [4] with PORTALS are now
achieved with just a few iterations and minimal user input.
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= This enables full MAESTRO solutions at low cost, to be used in database studies, fusion
pilot plant design iterations and black-box optimizers.
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* Black-box nature of MAESTRO makes it suitable for Bayesian Optimization applications

for device design [A. Saltzman PhD work, Tue 10.30am session].

4. CONCLUSIONS

= Surrogate—based optimization designed for expensive black-boxes very suitable for
transport solvers — predictions possible with NL GK in PORTALS [1].

* Refinements to PORTALS techniques resulted in efficient solutions with quasilinear models
like TGLF [4], even 1n the presence of discontinuities.

= MAESTRO developed to couple PORTALS with equilibrium, current diffusion, heating and
pedestal models, providing self-consistent solutions at low cost and minimal user input.

= Using a “from engineering parameters to plasma” approach, MAESTRO enables extensive

parameter studies, implementation within black-box optimizers, and fast iteration in fusion
pilot plant design studies.
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