
2. DEVELOPMENTS FOR ROBUST QUASILINEAR PREDICTIONS

▪ Uncertainty quantification of flux evaluations is important to achieve fast convergence.
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Integrated Modeling of Core Tokamak Plasmas Accelerated

with Surrogate Modeling and Uncertainty Quantification

ABSTRACT

▪ Core integrated modeling of tokamaks involves the multi-scale coupling of core transport solvers for 

kinetic profile predictions, pedestal models, heating and current drive and MHD equilibrium codes, among 

other important physics aspects. Transport solvers with quasilinear turbulence models are often the 

bottleneck for the integrated simulations, representing most of the computational cost of self-consistent 

steady-state plasma predictions, particularly for burning and reactor-relevant plasmas.

▪ This work implements the PORTALS surrogate-based transport solver [1] into an integrated modeling 

workflow that loops over “black-box-type” simulation codes that solve for pedestal (using a surrogate to 

EPED [2] peeling-ballooning limits), Grad-Shafranov equilibrium, ion-cylotron range-of-frequencies 

heating and Monte-Carlo alpha deposition. The latter physics aspects are resolved using interpretive 

TRANSP [3].

▪ This work demonstrates that this framework, named MAESTRO (Modular and Accelerated Engine for 

Simulation of Transport and Reactor Optimization), can provide self-consistent steady-state solutions of 

tokamak reactor cores with the full TGLF [4] reduced model for turbulent transport in a few dozen CPU 

hours and with minimal user input. The improvements to the PORTALS solver, performed under the 

SMARTS SciDAC partnership, are shown to provide an efficient, robust way to achieve steady-state 

solutions leveraging uncertainty quantification and physics-guided optimization methods.
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1. PORTALS: FLUX-MATCHING AS SURROGATE-BASED OPTIMIZATION

▪ Solving for the steady-state with delta-f transport 

models is expensive with standard numerical 

methods.
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▪ Kinetic profiles (and hence fusion performance) can be predicted solving steady-state 

transport equations:
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▪ PORTALS [1] leverages surrogate-based optimization, suitable for expensive black-box 

functions.

Surrogate
model trained
on a few simulations

Point predicted by 
surrogate to be flux-
matched is simulated 
and added to 
database

Surrogate becomes 
more accurate as 

solution is 
approached
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Want to use PORTALS?
Get MITIM-fusion repo!

NL CGYRO [5]
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▪ At the expense of more 

evaluations per iteration, 

smoother convergence (as in 

[6]) and better stopping criteria 

reduce wall-time cost.

▪ Enforcing positive-slope linear-mean GP for 

diagonal terms of transport matrix → enforcing 

𝑄𝑖 → 𝛽>0 ⋅ 𝑎/𝐿𝑇𝑖 far from training ranges.

Constant mean Linear mean

3. INTEGRATED MODELING WITH NEW MAESTRO WORKFLOW 

▪ Evaluating changes in equilibrium (e.g. q-profile, Λ𝑠ℎ𝑎𝑓), heating (e.g. Ohmic power, RF 

species partition and peak location) and edge boundary condition (e.g. 𝛽𝑁 affecting 𝑝𝑡𝑜𝑝, 

𝑤𝑡𝑜𝑝) is important for self-consistent plasma modeling.

▪ Similar to OMFIT STEP [7], MAESTRO loops over simulation codes (in beats) until self-

consistent solution is found with PORTALS, EPED NN [2, J. Hall Tue 2pm poster], 

TRANSP [3] and FreeGS [8].
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4. FROM ENGINEERING PARAMETERS TO PLASMA 

▪ Multi-channel flux-matching solutions using full TGLF [4] with PORTALS are now 

achieved with just a few iterations and minimal user input.

13 evaluations

for 4 channels!
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4. CONCLUSIONS

▪ Surrogate–based optimization designed for expensive black-boxes very suitable for
transport solvers → predictions possible with NL GK in PORTALS [1].

▪ Refinements to PORTALS techniques resulted in efficient solutions with quasilinear models 

like TGLF [4], even in the presence of discontinuities.

▪ MAESTRO developed to couple PORTALS with equilibrium, current diffusion, heating and 

pedestal models, providing self-consistent solutions at low cost and minimal user input.

▪ Using a “from engineering parameters to plasma” approach, MAESTRO enables extensive 

parameter studies, implementation within black-box optimizers, and fast iteration in fusion 

pilot plant design studies.
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▪ This enables full MAESTRO solutions at low cost, to be used in database studies, fusion 

pilot plant design iterations and  black-box optimizers.

▪ Black-box nature of MAESTRO makes it suitable for Bayesian Optimization applications 

for device design [A. Saltzman PhD work, Tue 10.30am session].
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