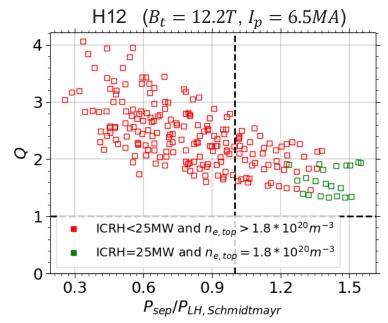
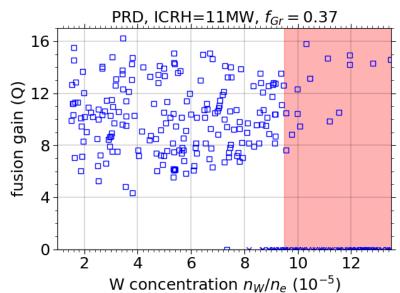


M. Muraca¹, P. Rodriguez-Fernandez¹, J. Hall¹, D. Fajardo², G. Tardini², B. C. Zimmermann³, T. Body⁴, N. T. Howard¹

And the SPARC team


[1] MIT PSFC, [2] Max Planck IPP, [3] Columbia University, [4] CFS



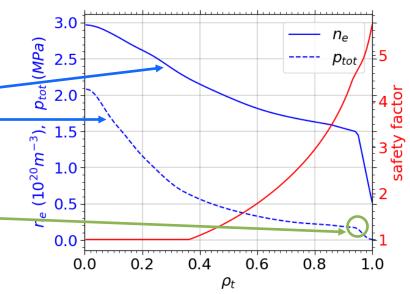
Motivation: Impurities impact confinement, radiation and H-mode access

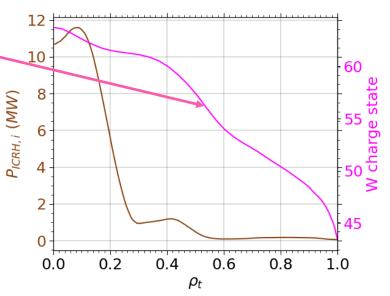
SPARC

- Experimental scaling laws $[1, 2] \rightarrow$ H-mode access probability increases with $P_{sep} \rightarrow$ is reduced by P_{rad}
- P_{rad} depends on impurity density profiles \rightarrow fixed radial concentrations assumed in previous work
- Broad scoping of several SPARC H-mode scenarios \rightarrow high P_{ICRH} and low $\langle n_e \rangle$ are optimal conditions to optimize performance and H-mode access [3]
- Needs for impurity transport simulations to validate this approach (are impurities peaking near-axis?) → Extensive study on impurity transport

11/18/2025

Outline of the update

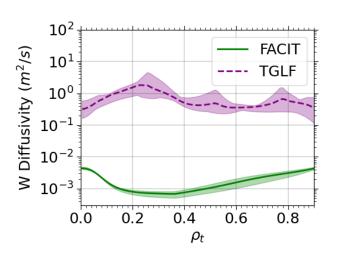


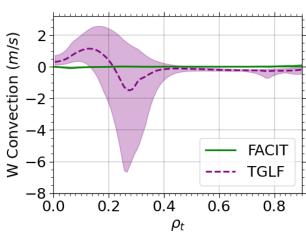

- Simulations framework
- Benchmark of previous results
- Impact of uncertainties
- Effect of rotation on transport

Simulations framework

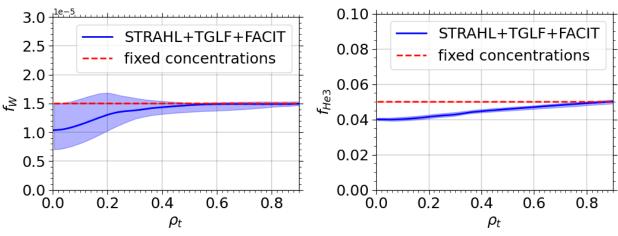
- **ASTRA** [4] flux-driven transport solver, coupled with:
 - ➤ **TGLF** [5] → turbulent transport
 - ➤ **FACIT** [6] → neoclassical transport
 - ➤ **EPED-NN** → pedestal structure
 - ➤ STRAHL [7] → atomic processes (e.g. recombination/ionization), charge state equilibrium and radiation
- Simulated impurities:
 - ➤ W → from ICRH antenna and PFCs
 - \rightarrow Ar \rightarrow from seeding
 - ➤ He3 → for ICRH absorption (treated here as thermal species)

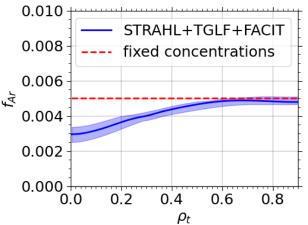
Outline of the update




- Simulations framework
- Benchmark of previous results
- Impact of uncertainties
- Effect of rotation on transport

Impurity transport validates simulations with fixed concentrations




- $^{\sim}$ flat impurity concentrations, varying n_{top} and P_{ICRH}
- Good penetration of He3 → 4% near-axis
- Ar hollowed profiles \rightarrow lower radiation with STRAHL + impurity transport \rightarrow higher P_{sen}
- Good agreement of Q, more optimistic $f_{LH}={^{P_{sep}}/_{P_{LH}}}$
- W impurity transport is dominated by turbulence (consistent with ITER predictions[8]). Same for Ar.
- → similar picture for the other H-modes, spanning different I_p and B_t

H12 $(B_t = 12.2T, I_p = 6.5MA)$

 $\langle \Delta Q \rangle \sim 2\%$

 $\langle \Delta Q \rangle \sim 2\%$ $\Delta Q_{max} \sim 10\%$ $\langle \Delta f_{LH} \rangle \sim 14\%$ $\Delta f_{LH,max} \sim 30\%$

Outline of the update

- Simulations framework
- Benchmark of previous results
- Impact of uncertainties
- Effect of rotation on transport

Scan of Ar concentration shows competitive effects on core and pedestal

- W concentration scan has minimal impact on performance and impurity peaking
- Ar concentration scan has an effect on:
 - $\succ Z_{eff}$
 - Pedestal pressure
 - Main ion dilution
 - ► ITG/TEM equilibration → density peaking
 - Radiation
- The lower dilution and density peaking counteract the higher pedestal pressure ->
 - roughly constant Q
 - slightly lower f_{LH}

$$\frac{P_{rad}}{P_{input}} = [0.15 - 0.4]$$

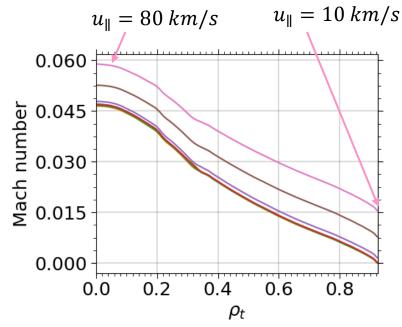
W scan

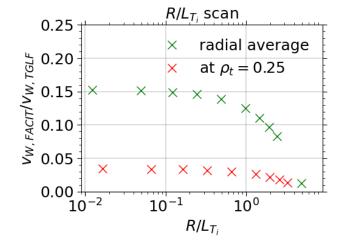
$f_{W,top}$	$\langle T_i \rangle (keV)$	$P_{rad}(MW)$	Q	$f_{\mathit{LH,Schmidt}}$
$0.6*10^{-5}$	8	10.7	1.43	1.58
2 * 10 ⁻⁵	8.05	12	1.43	1.57
$3.3*10^{-5}$	8.1	13.5	1.45	1.55
$4.6*10^{-5}$	8.18	15	1.45	1.51
6 * 10 ⁻⁵	8.2	15.7	1.52	1.51

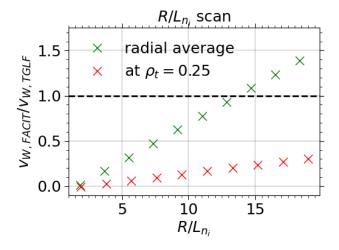
Ar scan

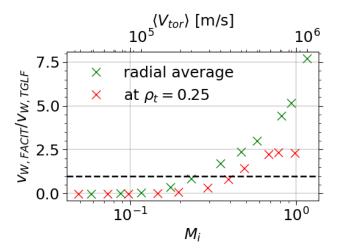
$f_{Ar,top}$	$\langle Z_{eff} \rangle$	$p_{top}\left(kPa\right)$	$\langle f_{DT} \rangle$	ν_n	$P_{rad}(MW)$	Q	f _{LH,Schmidt}
$0.5*10^{-3}$	1.34	256	0.87	1.66	5.8	1.54	1.61
1.8 * 10 ⁻³	1.7	272	0.85	1.59	7.7	1.55	1.6
$3.2*10^{-3}$	2.1	290	0.82	1.53	9	1.51	1.59
4. 6 * 10 ⁻³	2.5	304	0.79	1.47	11	1.53	1.59
6 * 10 ⁻³	2.9	320	0.77	1.37	12	1.43	1.57
$7.2 * 10^{-3}$	3.3	337	0.75	1.38	13	1.49	1.57
8.6 * 10 ⁻³	3.8	358	0.72	1.38	15	1.52	1.56

Outline of the update




- Simulations framework
- Benchmark of previous results
- Impact of uncertainties
- Effect of rotation on transport


Found small impact of rotation on transport for SPARC H-mode scenarios



- Rotation affects turbulent and neoclassical transport
- \rightarrow Reduced analytical model for core momentum transport [9] in ASTRA \rightarrow scan of edge rotation ($v_{tor} = [0-10] \ km/s$)
- Negligible effect on turbulent transport (via E_r modification)
- No effect on neoclassical transport → unexpected, maybe due to low collisionality?
- ightarrow sensitivity of neoclassical D and V, scanning v_{tor} , $\frac{R}{L_{T_i}}$ and $\frac{R}{L_{n_i}}$
- $\langle v_{W,NC}
 angle_{
 ho_t} \ll \langle v_{W,turb}
 angle_{
 ho_t}$ for every $abla T_i$ and reasonable $abla n_i$ and v_{tor}

11/18/2025 2025 APS-DPP Conference

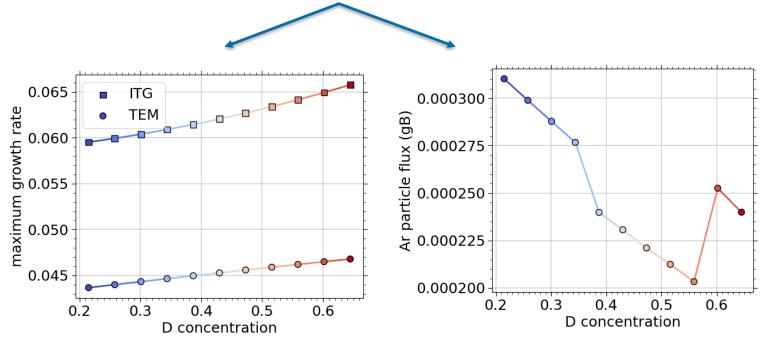
Conclusions and Outlook

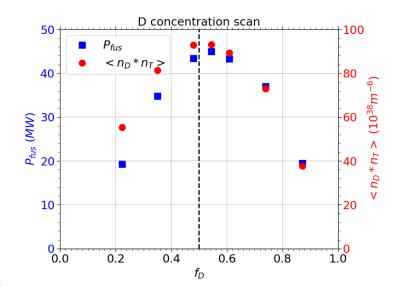
CONCLUSIONS

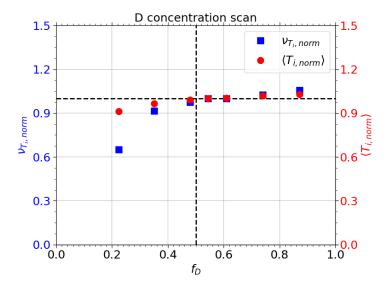
- Turbulence dominates impurity transport for a variety of SPARC H-modes
- Fixed-fraction impurities can be used to lower cost, without significant loss of accuracy
- He3 can reach ~4-5% concentration near-axis → efficient ICRH heating
- H-modes plasma performance is roughly independent on Ar concentrations
- Rotation levels predicted in SPARC do not affect the core turbulent and neoclassical transport

OUTLOOK:

- Inclusion of Lengyel model for consistent exhaust solution
- Simulate reactor class future devices
- Inclusion of self-consistent ICRH generated fast particles
- Simulate different scenarios (e.g. L-mode, QCE, I-mode)


Not shown: ~50-50% DT fuel mix composition maximizes P_{fus} , with an asymmetric distribution with respect to the D concentration



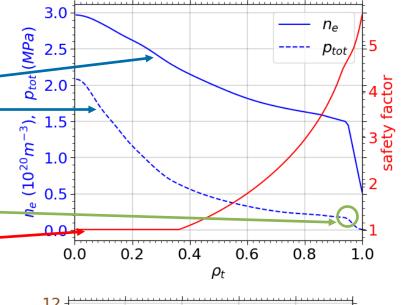

BACKUP

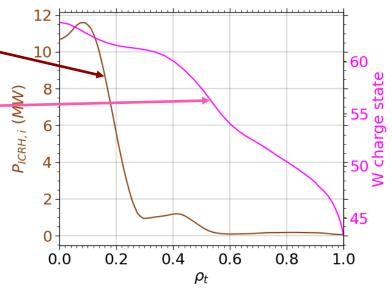
DT fuel mix gives maximum P_{fus} around 50-50%, with asymmetric distribution SPARC.

- As expected, the maximum fusion power is around 50-50% DT fuel mix composition
- However, the distribution of P_{fus} with $f_D = \frac{n_D}{n_D + n_T}$ is asymmetric (more optimistic at higher D concentrations). Why?
- \rightarrow higher D percentage \rightarrow higher growth rate (ITG dominated) \rightarrow higher Ar particle pinch \rightarrow higher $Z_{eff} \rightarrow$ higher $T_i \rightarrow$ higher P_{fus}
- TGLF standalone simulations confirmed the trend

11/18/2025

Simulations framework





- \rightarrow TGLF [5] \rightarrow turbulent transport
- ➤ FACIT [6] → neoclassical transport
- ➤ EPED-NN → pedestal stability
- ➤ TRANSP+Porcelli model → sawtooth period
- ➤ TRANSP+TORIC+CQL3D → ICRH deposition
- ➤ STRAHL [7] → atomic processes (e.g. recombination/ionization), charge state equilibrium and radiation

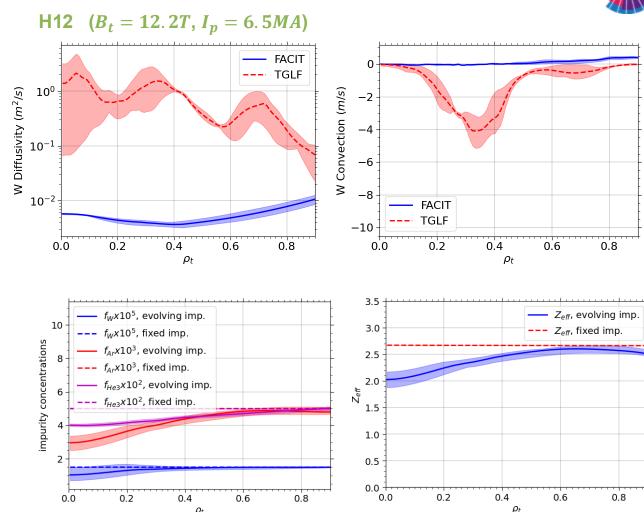
Simulated impurities:

- > W → from ICRH antenna and PFCs
- \rightarrow Ar \rightarrow from seeding and to reach target Z_{eff}
- \rightarrow for ICRH absorption (treated here as thermal species)

[6] Fajardo, PPCF 2022 [7] [

[4] Pereverzev, IPP report 5/98 11/18/2025

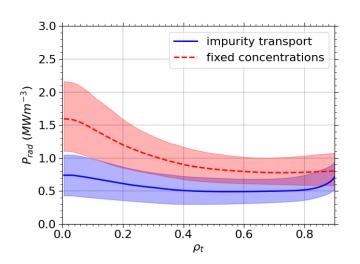
[5] Staebler NF 2021

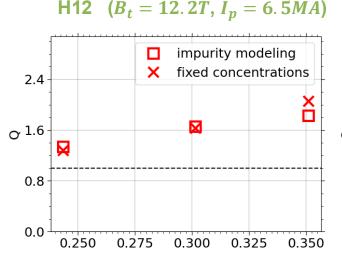

2025 APS-DPP Conference

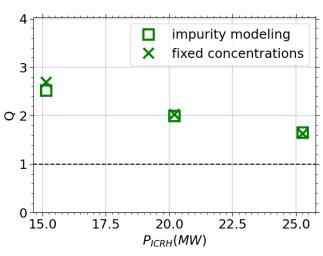
[7] Dux, IPP report 10/30

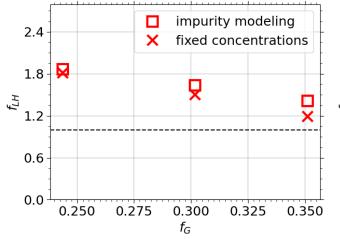
Turbulent transport prevails on neoclassical for impurities

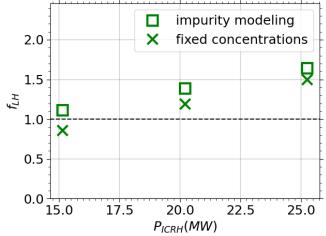
- The W impurity transport is dominated by turbulence (consistent with ITER predictions[8]).
- \rightarrow observed for all scenarios
- Valid also for Ar → slightly hollowed profiles for H12 → lower radiation with impurity transport
- Good penetration of He3 → 4% concentration near-axis possible with 5% penetration at top of pedestal

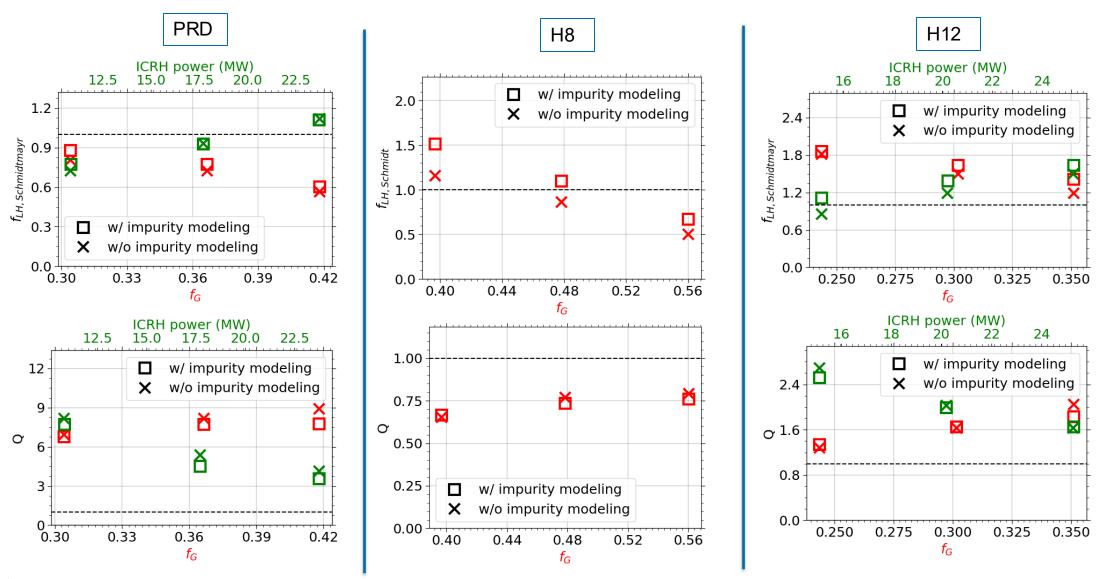



2025 APS-DPP Conference 15

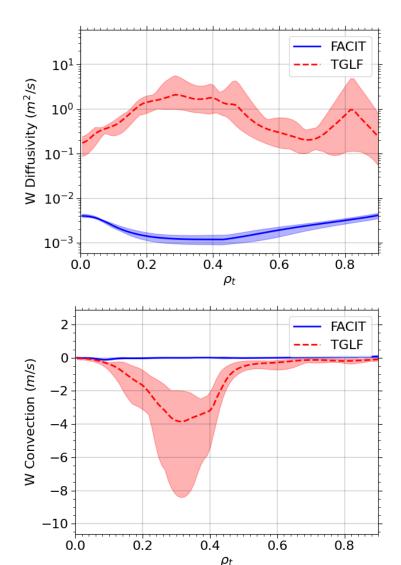

Impurity transport validates simulations with fixed concentrations

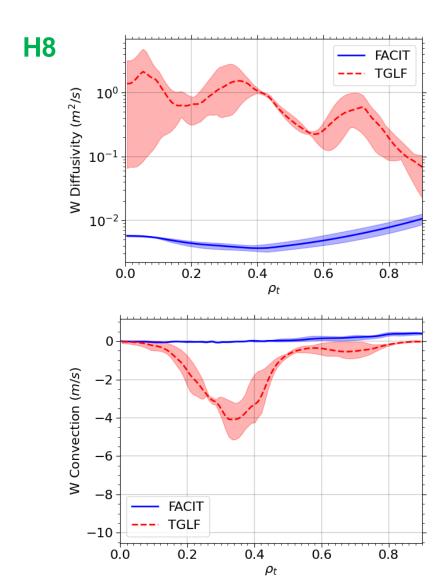



- Exceptional agreement of Q, scanning n_{top} and P_{ICRH}
- \rightarrow valid for all the H-modes analyzed, spanning different I_p , B_t
- Small deviation of $f_{LH} = {}^{P_{Sep}}/{}_{P_{LH}}$ caused by different radiation contributions, due to:
 - minor deviations of impurity densities
 - simplified formulae used in the simulations without STRAHL

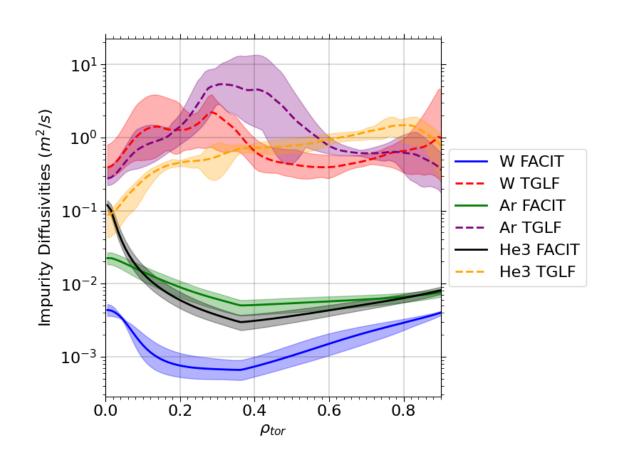


Benchmark of simulations including impurity transport

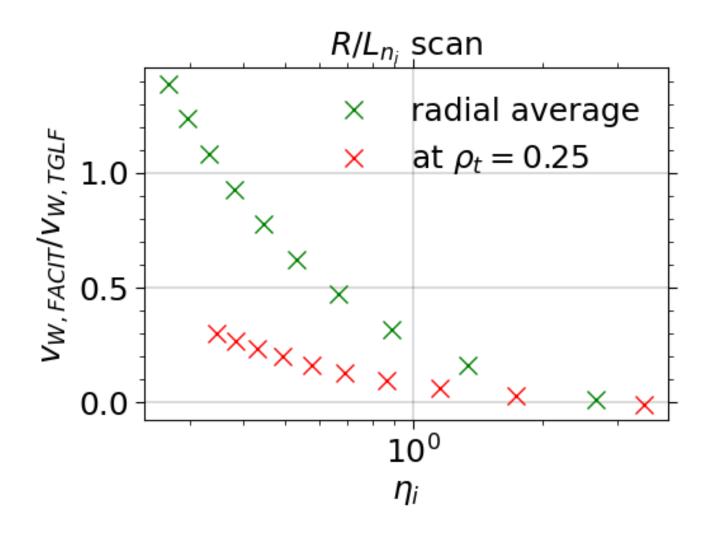

17

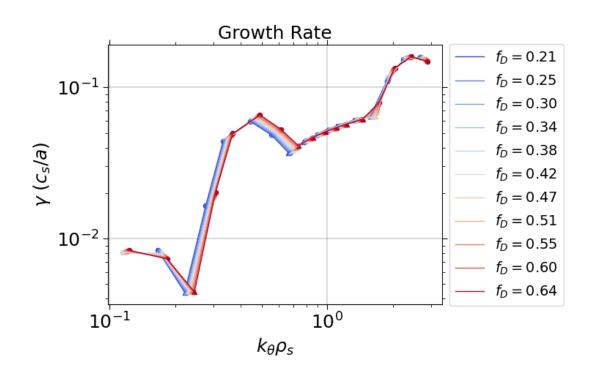


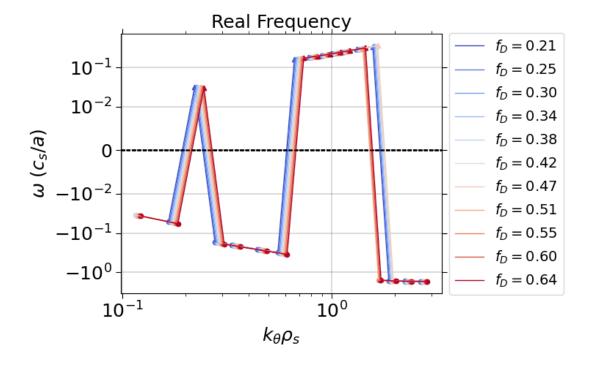
W diffusivities and convections for PRD and H8


PRD

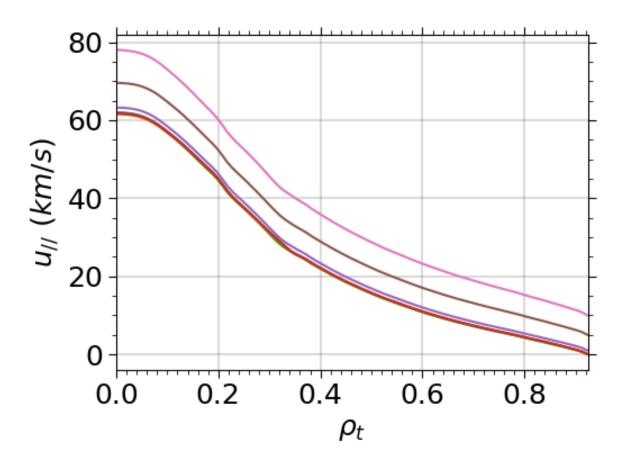
H12: diffusivities and convections of W, Ar and He3




Sensitivity study of FACIT



Spectra of standalone TGLF scan in D concentration



H12: u_{\parallel} profile for $u_{\parallel,edge}$ scan

