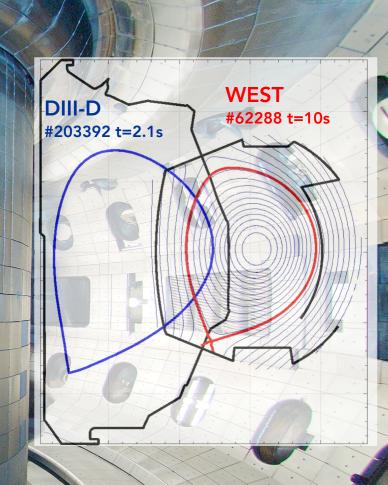
Impurity, Heat and Momentum Transport in the First DIII-D/WEST Similarity Experiment

- A. Biwole¹, S. Shi², T. Odstrčil³, X. Litaudon⁴
- B. Victor⁵, F. Turco⁶, S. K. Kim⁷, B. Zimmermann⁶
- D. Ernst¹, F. Khabanov⁸, and N. T. Howard¹
- ¹ MIT Plasma Science and Fusion Center
- ² Oak Ridge Associated Universities
- ³ General Atomics
- ⁴ CEA
- ⁵ Lawrence Livermore National Laboratory
- ⁶ Columbia University
- ⁷ Princeton Plasma Physics Laboratory
- ⁸ University of Wisconsin–Madison

APS DPP 2025 • Long Beach, CA

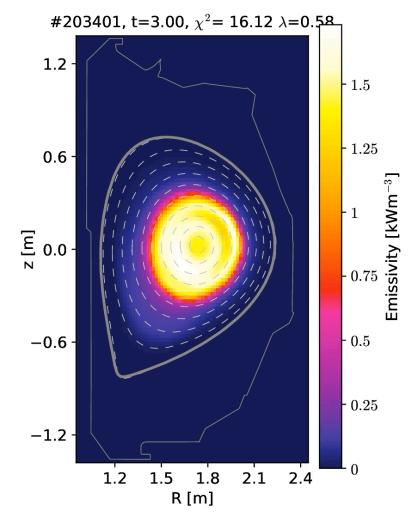
November 17-21, 2025

Supported by the U.S. DOE under DE-SC0014264 and DE-FC02-04ER5



GENERAL ATOMICS

Motivation & Outline Plasma performance with high W radiation


Motivation

- Tungsten (W) is the primary high-Z material for FPPs
- Understanding plasma performance in W environment is essential
- DIII-D and WEST devices complement each other
 - WEST : long-pulse, full W wall
 - DIII-D : C-wall + Laser Blow-Off (LBO) for controlled W injections

• This Talk :

- DIII-D similarity experiment with high, WEST-like, W radiation
- Originally aimed at discussing MHD effects on W impurity
- Observed strong thermal/momentum transport changes with high $f_{\it rad}$
- with consequences for impurity transport, and W peaking

MHD W pump-out observed with SXR in DIII-D

Laser Blow-Off (LBO) induced high W radiative cooling in DIII-D/WEST similarity experiment

DIII-D experiment achieved with WEST matched parameters :

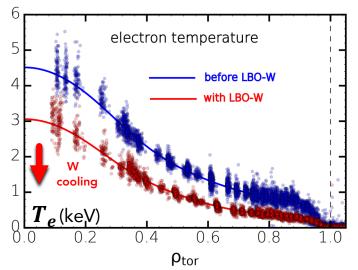

- triangularity δ , elongation κ , q_{95}
- and normalized core parameters (toroidal beta, ion larmor radius, collisionality, electron to ion temperature ratio T_e/T_i , Mach numbers). X Litaudon BO04 MFE ITER Session

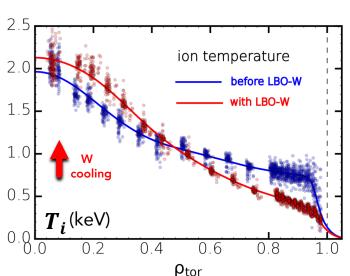
LBO-W injection yielded

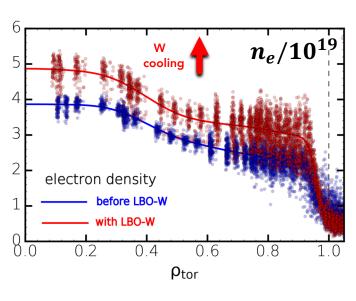
- W concentration $n_W/n_e \sim 3 \times 10^{-4}$
- Radiated power fraction $f_{rad} = P_{rad}/P_{in} > 0.5$

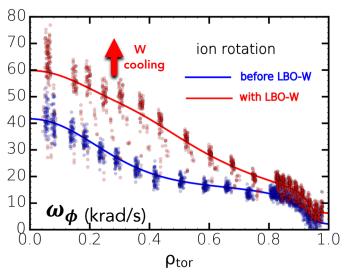
W radiative cooling in DIII-D enabled observation of :

- electron temperature drop ($T_e \downarrow \!\!\! \downarrow$) and density rise ($n_e \uparrow \!\!\! \uparrow$)
- increased toroidal rotation velocity, ω_{ϕ} \uparrow
- reduction in $T_e/T_i < 1$ in the edge

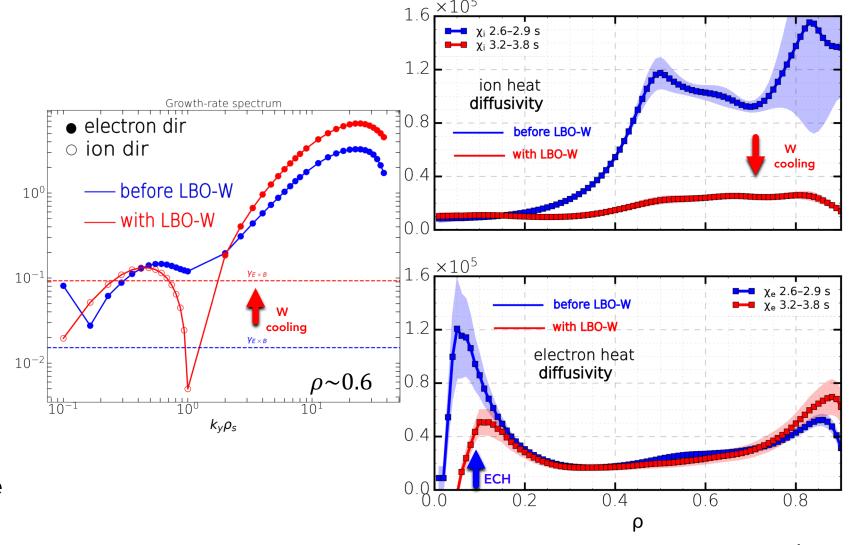




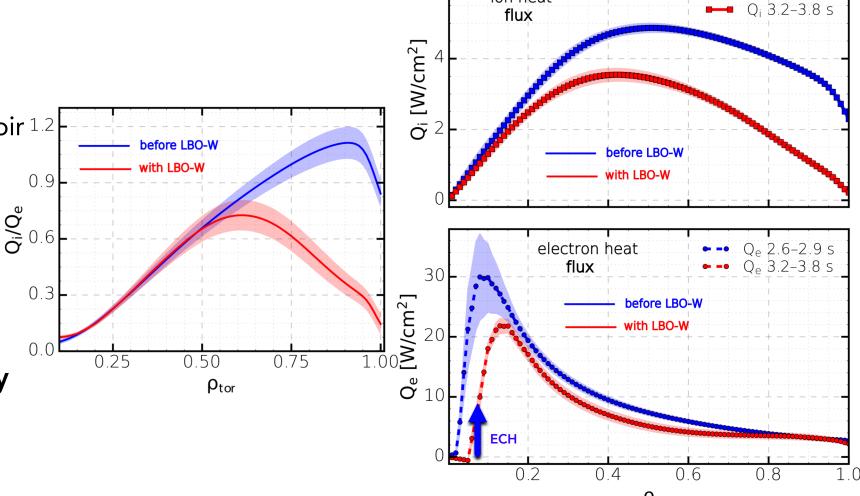

W radiative cooling drives ion-temperature peaking and increased plasma rotation


Key DIII-D observations with W cooling :

- T_e decreases and n_e increases across the radius
- ion-temperature peaking develops
 - + \sim 10% on-axis, reduced pedestal T_i
- toroidal rotation increases by up to a factor-of-two
- Profiles modeling confirms these trends
 - TGLF/NEO match measured responses
 - points to changes in background turbulence 2.0
- Implications for WEST
 - Insights into T_i , W peaking and plasma rotation (more difficult to assess on WEST)



Turbulence transition and stabilization with radiative W cooling drive the observed changes.


- Mechanism behind the changes
 - T_e/T_i , Z_{eff} , ν_{ee} shift mixed TEM/ITG to → ITG
 - overall turbulence level
 decreases
- Toroidal rotation increase
 - enhances $E \times B$ shear
 - quenching remaining ITG
- χ_i strongly drops towards the edge, no core changes
- χ_e drops only around ECH
 - even rises towards very edge

T_i peaking with W cooling arises from turbulence reduction, and i—e heat exchange in the edge

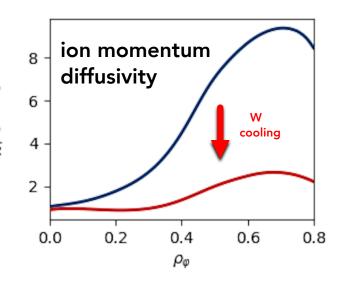
- Core Q_i unchanged by W cooling
- Edge Q_i/Q_e drops strongly
 - edge ions are energy reservoir 1.2 for electrons ($T_e < T_i$)
- Flattened T_i pedestal + unchanged core Q_i
 - \rightarrow produces T_i peaking
 - lower χ_i reinforces peaking
- Both the reversal of energy transfer and reduced turbulence contribute

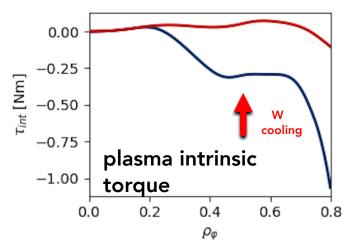
ion heat

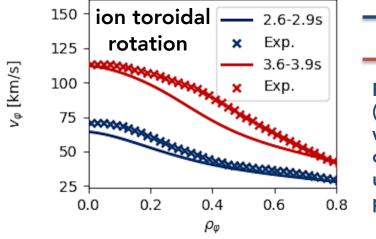
Q; 2.6-2.9 s

Radiative W cooling stabilizes turbulence and restores toroidal plasma rotation

Turbulence reduction from W


- Reduces ion momentum diffusivity χ_{ϕ} χ_{φ} [m²/s]
- Lower χ_{ϕ} allows rotation to rebuild


• Intrinsic torque au_{int}


- is less negative with W cooling
- further supports rotation recovery
- NBI torque input unchanged between the two phases

Relevance to WEST

 similar turbulence-driven changes expected: harder to diagnose directly on WEST

Before LBO-W

with LBO-W

Reduced-rotation model (Zimmermann PoP 2024) well reproduces the observed rotation recovery using experimental profiles.

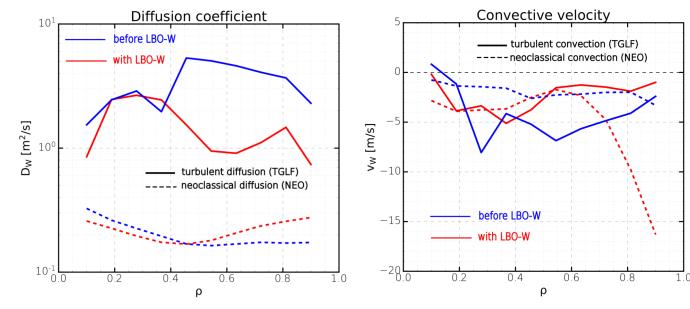
Radiative cooling enhances the inward neoclassical pinch \rightarrow increased W peaking !

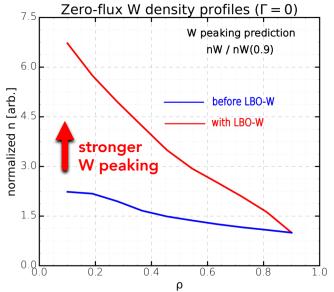
Turbulent transport decreases:

- Lower turbulent ${\it D}$ and ${\it v}$ in the W-cooled phase

Neoclassical inward pinch increases

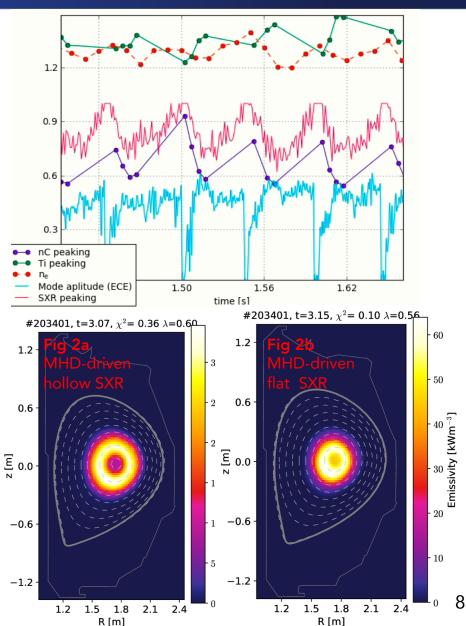
- Stronger v_{neo} with cooling
- almost across entire radius


Combined effect → more peaked W


 cooling suppresses turbulence, enhances neoclassical pinch, bootstrapping the cycle.

Relevance to WEST & W-walled DIII-D

- impurity accumulation bigger concern with high f_{rad} .



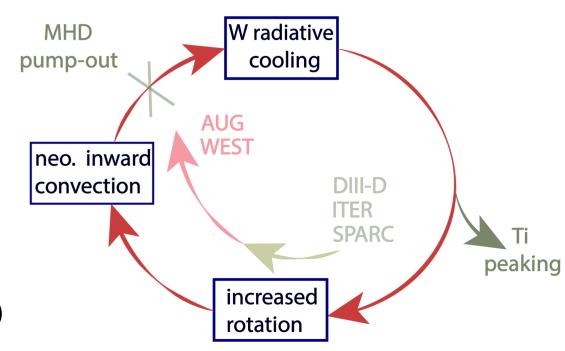
Impurity peaking modulated by MHD activity, possibly through T_i -screening effects

- Benign MHD mode present through the discharge
 - mode frequency doubles during cooling phase
- Impurity peaking oscillates in phase with the MHD amplitude
- MHD oscillations modulate T_i and n_e profiles o modulate neoclassical convection
- Higher T_i and flatter n_e enhance outward neoclassical convection (T_i -screening) \rightarrow reduces W peaking (Fig 2a)

Conclusions

LBO was used to simulate W environment in DIII-D/WEST similarity plasma

- with $n_W/n_e \sim 3 \times 10^{-4}$, $f_{rad} > 0.5$ (matching WEST)


Radiative cooling by W

- increases toroidal rotation
- shifts, stabilizes turbulence via lower T_e/T_i and enhanced $E \times B$ shear
- indirectly enhances ion heat confinement (T_i peaking)

Impurity transport

- modulated by MHD pump-out via T_i screening
- is mainly turbulent in the no-W phase
- acquire stronger inward neo. pinch with high cooling

F Turco, CO05 - This Session
F Turco, NF 64, 076063 & 086008
A Biwole, RSI & NF, in prep
S K Kim, PRL, in review
X Litaudon BO04 - MFE ITER